scholarly journals Managing pregnancy in a spinal muscular atrophy type III patient in Indonesia: a case report

2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Cempaka Thursina Srie Setyaningrum ◽  
Indra Sari Kusuma Harahap ◽  
Dian Kesumapramudya Nurputra ◽  
Irwan Taufiqur Rachman ◽  
Nur Imma Fatimah Harahap

Abstract Background Spinal muscular atrophy is a genetic disorder characterized by degeneration of lower motor neurons, leading to progressive muscular atrophy and even paralysis. Spinal muscular atrophy usually associated with a defect of the survival motor neuron 1 (SMN-1) gene. Classification of spinal muscular atrophy is based on the age of onset and maximum motor function milestone achieved. Although spinal muscular atrophy can be screened for in newborns, and even confirmed earlier genetically, this remains difficult in Third World countries such as Indonesia. Case presentation A 28-year-old Asian woman in the first trimester of her second pregnancy, was referred to the neurology department from the obstetric department. Her milestone history showed she was developmentally delayed and the ability to walk independently was reached at 26 months old. At 8 years old, she started to stumble and lose balance while walking. At this age, spinal muscular atrophy was suspected because of her clinical presentations, without any molecular genetic testing. She was married at the age of 25 years and was soon pregnant with her first child. At the gestational age of 32 weeks, her first pregnancy was ended by an emergency caesarean section because of premature rupture of the membranes. In this second pregnancy, she was referred early to the general hospital from the district hospital to receive multidisciplinary care. She and her first daughter underwent genetic testing for spinal muscular atrophy, which has been readily available in our institution since 2018, to confirm the diagnosis and prepare for genetic counseling. Conclusions Managing pregnancy in a patient with spinal muscular atrophy should be performed collaboratively. In this case, genetic testing of spinal muscular atrophy and the collaborative management of this patient allowed the clinical decision making and genetic counseling throughout her pregnancy and delivery.

2015 ◽  
Vol 112 (43) ◽  
pp. E5863-E5872 ◽  
Author(s):  
Laurent P. Bogdanik ◽  
Melissa A. Osborne ◽  
Crystal Davis ◽  
Whitney P. Martin ◽  
Andrew Austin ◽  
...  

Clinical presentation of spinal muscular atrophy (SMA) ranges from a neonatal-onset, very severe disease to an adult-onset, milder form. SMA is caused by the mutation of the Survival Motor Neuron1 (SMN1) gene, and prognosis inversely correlates with the number of copies of the SMN2 gene, a human-specific homolog of SMN1. Despite progress in identifying potential therapies for the treatment of SMA, many questions remain including how late after onset treatments can still be effective and what the target tissues should be. These questions can be addressed in part with preclinical animal models; however, modeling the array of SMA severities in the mouse, which lacks SMN2, has proven challenging. We created a new mouse model for the intermediate forms of SMA presenting with a delay in neuromuscular junction maturation and a decrease in the number of functional motor units, all relevant to the clinical presentation of the disease. Using this new model, in combination with clinical electrophysiology methods, we found that administering systemically SMN-restoring antisense oligonucleotides (ASOs) at the age of onset can extend survival and rescue the neurological phenotypes. Furthermore, these effects were also achieved by administration of the ASOs late after onset, independent of the restoration of SMN in the spinal cord. Thus, by adding to the limited repertoire of existing mouse models for type II/III SMA, we demonstrate that ASO therapy can be effective even when administered after onset of the neurological symptoms, in young adult mice, and without being delivered into the central nervous system.


2021 ◽  
Vol 22 (11) ◽  
pp. 5913
Author(s):  
Marc-Olivier Deguise ◽  
Lucia Chehade ◽  
Rashmi Kothary

Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder leading to paralysis, muscle atrophy, and death. Significant advances in antisense oligonucleotide treatment and gene therapy have made it possible for SMA patients to benefit from improvements in many aspects of the once devastating natural history of the disease. How the depletion of survival motor neuron (SMN) protein, the product of the gene implicated in the disease, leads to the consequent pathogenic changes remains unresolved. Over the past few years, evidence toward a potential contribution of gastrointestinal, metabolic, and endocrine defects to disease phenotype has surfaced. These findings ranged from disrupted body composition, gastrointestinal tract, fatty acid, glucose, amino acid, and hormonal regulation. Together, these changes could have a meaningful clinical impact on disease traits. However, it is currently unclear whether these findings are secondary to widespread denervation or unique to the SMA phenotype. This review provides an in-depth account of metabolism-related research available to date, with a discussion of unique features compared to other motor neuron and related disorders.


2019 ◽  
Vol 28 (22) ◽  
pp. 3742-3754 ◽  
Author(s):  
E Villalón ◽  
R A Kline ◽  
C E Smith ◽  
Z C Lorson ◽  
E Y Osman ◽  
...  

Abstract Spinal muscular atrophy (SMA) is a devastating infantile genetic disorder caused by the loss of survival motor neuron (SMN) protein that leads to premature death due to loss of motor neurons and muscle atrophy. The approval of an antisense oligonucleotide therapy for SMA was an important milestone in SMA research; however, effective next-generation therapeutics will likely require combinatorial SMN-dependent therapeutics and SMN-independent disease modifiers. A recent cross-disease transcriptomic analysis identified Stathmin-1 (STMN1), a tubulin-depolymerizing protein, as a potential disease modifier across different motor neuron diseases, including SMA. Here, we investigated whether viral-based delivery of STMN1 decreased disease severity in a well-characterized SMA mouse model. Intracerebroventricular delivery of scAAV9-STMN1 in SMA mice at P2 significantly increased survival and weight gain compared to untreated SMA mice without elevating Smn levels. scAAV9-STMN1 improved important hallmarks of disease, including motor function, NMJ pathology and motor neuron cell preservation. Furthermore, scAAV9-STMN1 treatment restored microtubule networks and tubulin expression without affecting tubulin stability. Our results show that scAAV9-STMN1 treatment improves SMA pathology possibly by increasing microtubule turnover leading to restored levels of stable microtubules. Overall, these data demonstrate that STMN1 can significantly reduce the SMA phenotype independent of restoring SMN protein and highlight the importance of developing SMN-independent therapeutics for the treatment of SMA.


2017 ◽  
Vol 48 (04) ◽  
pp. 273-281 ◽  
Author(s):  
Janbernd Kirschner ◽  
Astrid Pechmann

AbstractSpinal muscular atrophy (SMA) is an autosomal-recessive, neuromuscular disorder that is characterized by degeneration of the anterior horn cells of the spinal cord, resulting in muscle atrophy and proximal muscle weakness. SMA is caused by a homozygous deletion in the survival motor neuron 1 (SMN1) gene on chromosome 5q13. The SMN gene region also comprises a centromeric copy containing the SMN2 gene. The severity of the disease correlates with age of onset and SMN2 copy number and varies from a severe muscle weakness with tetraplegia in infants to a mild proximal muscle weakness in ambulant children. Due to lack of a curative treatment, the care of children with SMA consists mostly of a multidisciplinary treatment including respiratory, nutritional, and orthopaedic management. During the past years, there has been a promising approach for the development of drugs intervening the pathophysiology of SMA with the main idea of upregulating the levels of functional SMN protein. Here, we summarize recent studies regarding diagnosis and treatment avenues in SMA.


2021 ◽  
Vol 23 (1) ◽  
pp. 103-110
Author(s):  
Thomas W. Prior ◽  
Pinar Bayrak-Toydemir ◽  
Ty C. Lynnes ◽  
Rong Mao ◽  
James D. Metcalf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document