scholarly journals Endometrial regenerative cells with galectin-9 high-expression attenuate experimental autoimmune hepatitis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongda Wang ◽  
Yiming Zhao ◽  
Bingbing Ren ◽  
Yafei Qin ◽  
Guangming Li ◽  
...  

Abstract Background Autoimmune hepatitis (AIH) is a T cell-mediated immune disease that activates abnormally against hepatic antigens. We have previously reported that endometrial regenerative cells (ERCs) were a novel source of adult stem cells, which exhibiting with powerful immunomodulatory effects. Galectin-9 (Gal-9) is expressed in ERCs and plays an important role in regulating T cell response. This study aims to explore the role of ERCs in attenuation of AIH and to determine the potential mechanism of Gal-9 in ERC-mediated immune regulation. Methods ERCs were obtained from menstrual blood of healthy female volunteers. In vitro, ERCs were transfected with lentivirus vectors carrying LGALS9 gene and encoding green fluoresce protein (GFP-Gal-9-LVs) at a MOI 50, Gal-9 expression in ERCs was detected by ELISA and Q-PCR. CD4+ T cells isolated from C57BL/6 mouse spleen were co-cultured with ERCs. The proliferation of CD4+ T cells was detected by CCK-8 kit and the level of Lck/zap-70/LAT protein was measured by western blot. Furthermore, AIH was induced by ConA in C57BL/6 mice which were randomly assigned to untreated, unmodified ERC-treated and Gal-9 high-expressing ERC-treated groups. Histopathological score, liver function, CD4+/CD8+ cell infiltration in liver tissues, the proportion of immune cells in the spleen and liver, and ERC tracking were performed accordingly to assess the progression degree of AIH. Results After transfecting with GFP-Gal-9-LVs, Gal-9 expression in ERCs was significantly increased. Additionally, Gal-9 high-expressing ERCs effectively inhibited CD4+ T cell proliferation and downregulated CD4+ T cell active related proteins p-Lck/p-ZAP70/p-LAT in vitro. Furthermore, treatment with Gal-9 high-expressing ERCs restored liver function, ameliorated liver pathological damage, inhibit CD4+ and CD8+ T cell proliferation and suppress Th1 and Th17 cell response in the hepatitis mice. In addition, Gal-9 high-expressing ERCs further markedly enhanced the level of IL-10 but reduced the levels of IFN-γ, TNF-α, and IL-4 in mouse sera and liver. Cell tracking also showed that ERCs could migrate to the damaged liver organs. Conclusions The results suggested that Gal-9 was an essential modulator, which was required by ERCs in regulating T cell response and attenuating ConA-induced experimental hepatitis. And also, it provides a novel idea for the clinical treatment of AIH.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5138-5138
Author(s):  
Dolores Mahmud ◽  
Sandeep Chunduri ◽  
Javaneh Abbasian ◽  
John Maciejewski ◽  
Ronak Iqbal ◽  
...  

Abstract Transplantation of HLA-mismatched nucleated cells from cord blood (CB) has reduced risks of graft rejection and severe acute graft-versus-host disease. In this study we analyzed the in-vitro alloantigen presenting capacity of cord blood nucleated cells. CB mononuclear cells (MNCs) or immunomagnetically-selected CD34+ cells, or CD14+ monocytes, were irradiated and tested as stimulators of allogeneic blood T cells in primary (stimulator:responder ratio = 1:1) or secondary (stimulator:responder ratio = 1:2) mixed leukocyte culture (MLC), or in cytotoxic T-lymphocytes (CTL) assays. CB-MNCs failed to induce allogeneic T cell proliferation in 6-days primary MLC, whereas CD34+ or CD14+ cells stimulated brisk T cell responses. A suppressive effect of CB-MNCs was ruled out since CD3+ cell-depletion of CB-MNCs did not restore CB immunogenicity and the addition of increasing doses of CB-MNCs did not inhibit T cell alloreactivity to CD34+ cells. Despite allogeneic T cells were unresponsive to CB-MNCs after primary and secondary MLC, T cell anergy was ruled out since T cells that were unresponsive after primary MLC proliferated potently in secondary MLC stimulated with CB CD34+ cells, and even more with CB monocyte-derived dendritic cells (Mo-DC) generated in-vitro with GM-CSF and IL-4. Interestingly, after co-culture with irradiated allogeneic T cells for 6 days, CB-MNCs showed a greater proportion of CD86+ cells and elicited allo- T cell proliferation. In addition, allo-CTL activity was induced by CB-MNCs only after restimulating effector cells for 3–4 weeks (26±7% lysis of antigen-specific PHA-blast at 50:1 E:T ratio), and was comparable to CTL activity induced after 1 week by Mo-DC generated from the same CB. When T cell effectors were stimulated by combining two incompatible cord blood MNCs mixed together, CTL activity was then detected after 4 weeks against both of them regardless of the CB:CB cell ratio. These results show an impaired allo-APC activity of CB-MNCs, without suppressive or tolerogenic activity. These findings might partially explain the initial engraftment of combined HLA mismatched CB grafts in vivo, however they also suggest that a delayed T cell response may occur due to CB-derived APCs activating CTLs.


2007 ◽  
Vol 204 (8) ◽  
pp. 1803-1812 ◽  
Author(s):  
Daisuke Kamimura ◽  
Michael J. Bevan

An optimal CD8+ T cell response requires signals from the T cell receptor (TCR), co-stimulatory molecules, and cytokines. In most cases, the relative contribution of these signals to CD8+ T cell proliferation, accumulation, effector function, and differentiation to memory is unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 2006. Science. 311:1924–1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and M. Murakami. 2006. J. Immunol. 177:306–314) has shown that anti–interleukin (IL) 2 monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. We investigated the role of IL-2 signals in driving CD8+ T cell proliferation in the absence of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal transducer and activator of transcription 5 in all CD8+ T cells, both naive and memory phenotype, and promoted the differentiation of naive CD8+ T cells into effector cells. IL-2–anti–IL-2 complexes induced proliferation of naive CD8+ T cells in an environment with limited access to self–major histocompatibility complex (MHC) and when competition for self-MHC ligands was severe. After transfer into wild-type animals, IL-2–activated CD8+ T cells attained and maintained a central memory phenotype and protected against lethal bacterial infection. IL-2–anti–IL-2 complex–driven memory-like CD8+ T cells had incomplete cellular fitness compared with antigen-driven memory cells regarding homeostatic turnover and cytokine production. These results suggest that intense IL-2 signals, with limited contribution from the TCR, program the differentiation of protective memory-like CD8+ cells but are insufficient to guarantee overall cellular fitness.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2072-2072
Author(s):  
Christian P Pallasch ◽  
Susanne Ulbrich ◽  
Reinhild Brinker ◽  
Robert A Uger ◽  
Michael Hallek ◽  
...  

Abstract Suppression of patients’ T-cells is a key event in CLL pathogenesis and was demonstrated to be mediated by direct cell-cell contact of malignant CLL cells with T-cells. CD200 plays a critical role in regulating the immune system and has been shown to be up-regulated on the surface of different tumors including CLL. In this study we addressed the effects of CD200 over-expression on CLL cells on autologous T cells in a mixed lymphocyte reaction system. We used native and CD40 ligand (CD40L)- stimulated CLL cells as antigen-presenting cells (APCs) to expand autologous T cells of 14 patients. T-cell proliferation was analyzed over 3 weeks of in vitro culture. A functional anti- CD200 antibody (1B9) was added to reveal CD200-mediated immunosuppression in the autologous system. Expansion of patient T-cells was assessed by flow cytometry including intracellular staining of FOXP3. Specificity towards CLL-specific antigens was monitored applying fibromodulin derived peptides for detection of specific T-cells by ELISPOT analysis. T-cell proliferation over 3 weeks of in vitro culture was significantly enhanced compared to control cells when using CD40L-stimulated APCs and an anti-CD200 antibody (p=0.0004). CD200 blockade was further shown to stimulate antigen-specific T-cell responses towards the F2 and F4 peptides of the CLL-associated antigen fibromodulin (p=0.04). Finally, the number of CD4+/CD25high/FOXP3+ T cells (Treg) was significantly decreased in CD200 treated mixed lymphocyte reaction (p=0.04). In summary, CD200 blockade may provide therapeutic benefits in CLL by enhancing T-cell expansion, augmenting an antigen-specific T cell response with suppression of regulatory T cells. CD200 seems to be an important immunosuppressive molecule in CLL: by CD200 blockade immune suppression can be overcome by altering tolerance to tumor antigens and deregulation of regulatory T cells. This combination of an immune induction paralleled by a disruption of immunosuppressive factors makes anti-CD200 mAb a powerful tool for future treatment of CLL, possibly in combination with other B cell cytotoxic or immunostimulatory approaches.


2000 ◽  
Vol 74 (12) ◽  
pp. 5460-5469 ◽  
Author(s):  
SangKon Oh ◽  
J. Michael McCaffery ◽  
Maryna C. Eichelberger

ABSTRACT During the acute phase of infection with influenza A virus, the degree of lymphopenia correlates with severity of disease. Factors that contribute to T-cell activation during influenza virus infection may contribute to this observation. Since the immune response is initiated when dendritic cells (DC) interact with T cells, we have established an in vitro system to examine the effects of influenza virus infection on DC function. Our results show that allogeneic T-cell proliferation was dependent on the dose of A/PR/8/34 used to infect DC, with enhanced responses at low, but not high, multiplicities of infection. The lack of enhancement at high virus doses was not primarily due to the increased rate of DC apoptosis, but required viral replication and neuraminidase (NA) activity. Clusters that formed between DC or between DC and T cells were also dependent on the viral dose. This change in cellular interaction may oppose T-cell proliferation in response to DC infected with high doses of PR8, since the increased contact between DC resulted in the exclusion of T cells. The enhanced alloreactive T-cell response was restored by neutralization of transforming growth factor β1 (TGF-β1). It is likely that NA present on viral particles released from DC infected with high doses of PR8 activates TGF-β1. Future studies will determine the mechanism by which TGF-β1 modifies the in vitro T-cell response and address the contribution of this cytokine to the lymphopenia observed in severe disease.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.


2019 ◽  
Vol 15 (11) ◽  
pp. 2229-2239 ◽  
Author(s):  
Zhuoran Tang ◽  
Fengzhen Mo ◽  
Aiqun Liu ◽  
Siliang Duan ◽  
Xiaomei Yang ◽  
...  

Adoptive cell-based immunotherapy typically utilizes cytotoxic T lymphocytes (CTLs), expanding these cells ex vivo. Such expansion is traditionally accomplished through the use of autologous APCs that are capable of interactions with T cells. However, incidental inhibitory program such as CTLA-4 pathway can impair T cell proliferation. We therefore designed a nanobody which is specific for CTLA-4 (CTLA-4 Nb 16), and we then used this molecule to assess its ability to disrupt CTLA-4 signaling and thereby overcome negative costimulation of T cells. With CTLA-4 Nb16 stimulation, dendritic cell/hepatocellular carcinoma fusion cells (DC/HepG2-FCs) enhanced autologous CD8+ T cell proliferation and production of IFN-γ in vitro, thereby leading to enhanced killing of tumor cells. Using this approach in the context of adoptive CD8+ immunotherapy led to a marked suppression of tumor growth in murine NOD/SCID hepatocarcinoma or breast cancer xenograft models. We also observed significantly increased tumor cell apoptosis, and corresponding increases in murine survival. These findings thus demonstrate that in response to nanobody stimulation, DC/tumor cells-FC-induced specific CTLs exhibit superior anti-tumor efficacy, making this a potentially valuable means of achieving better adoptive immunotherapy outcomes in cancer patients.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Konstantina Antoniou ◽  
Fanny Ender ◽  
Tillman Vollbrandt ◽  
Yves Laumonnier ◽  
Franziska Rathmann ◽  
...  

Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2668-2668
Author(s):  
Abdul Tawab ◽  
Yoshiyuki Takahashi ◽  
Childs Richard ◽  
Kurlander J. Roger

Abstract In vitro stimulation of human peripheral blood B cells with recombinant IL-4 and CD40 ligand (CD40L) markedly increases their expression of MHC and costimulatory molecules, thus enhancing antigenic peptide presentation to T cells. Because these cells proliferate extensively in vitro (unlike monocytes or dendritic cells), they represent a promising and convenient reagent for the generation and maintenance of antigen-specific T cells for use in a variety of experimental or therapeutic settings. However, the impact of this type of B cell APC on cytokine production by responder T cells has hitherto not been examined. To address this issue, we stimulated normal human T cells with either allogeneic B cells (generated in vitro) or with MNCs obtained from the same donor. After 7 days, T cells were washed and re-challenged with the same APCs. The resulting alloreactive cytokine response was measured using quantitative ELISPOT methods and expressed as the frequencies of IFN-γ, IL-4, and IL-5 producing cells per thousand responder cells added. B cell- and MNC-primed cell lines both produced vigorous lymphokine responses, but B cell-stimulated T cells consistently produced more IL-5 spots (mean of 265 vs. 98/1000 responders, p<0.002) and fewer IFN-γ spots (163 vs 386/1000 cells, p<0.005) than MNC-stimulated cells. Further, the ratio of IFN-γ to IL-5 spots was almost ten-fold lower in B cell-stimulated cultures compared to MNC-induced cultures (0.67 vs. 5.2, p<0.001). ELISPOT studies assessing the ratio of IFN-γ to IL-4 spots and ELISA assays comparing IFN-γ and IL-5 levels from culture supernatants demonstrated the same pattern of marked type 2 skewing by B cells. This pattern was unaffected by the presence of anti-IL-4 antibody suggesting type 2 skewing was not mediated by IL-4. Cytokine skewing produced by B cells or MNC could be partially reversed by swapping MNC and B cells during re-stimulation on day 7, but this plasticity was markedly reduced after 3 (weekly) cycles of B cell or MNC re-stimulation in vitro. Type 2 skewing by B cells was enhanced when monocytes were removed from responder T cell populations by either depleting CD14+ positive cells or by positive selection of T cells prior to stimulation. In contrast, type 2 polarization could be prevented using recombinant IL-12. Not all cells of B-cell origin share the same propensity to type 2 skewing observed with IL-4/CD40L-stimulated B cells; under identical conditions, EBV-transformed B cells stimulated alloimmune T cells to produce a strong type 1 cytokine response comparable to that produced by MNCs. In summary, IL-4/CD40L-stimulated B cells strongly promote a type 2 T cell response during primary alloimmune challenge; this skewing can become fixed after repeated B cell stimulation. Investigators using these cells as APC should be aware of this potential phenomenon, particularly during primary T cell responses. It is also important to consider the factors described above that may exacerbate or ameliorate this effect.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4484-4484 ◽  
Author(s):  
Antonio Pierini ◽  
Lucrezia Colonna ◽  
Maite Alvarez ◽  
Dominik Schneidawind ◽  
Byung-Su Kim ◽  
...  

Adoptive transfer of CD4+CD25+FoxP3+ regulatory T cells (Tregs) prevents graft versus host disease (GvHD) in several animal models and following allogeneic hematopoietic cell transplantation (HCT) in clinical trials. In these models donor derived Tregs have been mainly used as they share the same major histocompatibility complex (MHC) with conventional CD4+ and CD8+ T cells (Tcons) that are primarily responsible for GvHD onset and persistence. Third-party derived Tregs are a promising alternative tool for cellular therapy as they can be prepared in advance, screened for pathogens and activity and banked. In this study we explored MHC disparities between Tregs and Tcons in HCT to evaluate the impact of these different cell populations in GvHD prevention and survival after transplant. Methods and Results We evaluated the ability of highly purified Treg to suppress proliferation of C57BL/6 (H-2b) Tcons following exposure to irradiated splenocytes from BALB/C (H-2d) mice in vitro in a mixed lymphocyte reaction (MLR). Either donor derived C57BL/6 (H-2b) or third party FVB (H-2q) Tregs suppressed Tcon proliferation at the Treg/Tcon ratios of 1:2 and 1:4. The same Treg population effectively suppressed different MHC derived Tcons where BALB/C (H-2d) or FVB (H-2q, third-party) Tcons were incubated with irradiated splenocytes from C57BL/6 (H-2b) mice and were effectively suppressed with BALB/C (H-2d) Tregs. In the MLR, third-party Tregs present the same activation molecule expression patterns as MHC matched Tregs: CTLA4 and LAG3 expression is enhanced after stimulation with interleukin-2 (IL-2) and anti-CD3/CD28 beads, while MHC class II molecule expression is increased after 3-4 days of culture with Tcons and irradiated splenocytes. Furthermore third-party and MHC matched Tregs express the same levels of interleukin-10 (IL-10). We translated these results to in vivo studies in animal models. In these studies T cell depleted bone marrow (TCD BM) from C57BL/6 (H-2b) mice was injected into lethally irradiated (total body irradiation, 8 Gy) BALB/C (H-2d) recipient mice. 2 days later GvHD was induced by injecting luc+ donor derived Tcons (1x106/mouse). Using this model GvHD was evaluated following the adoptive transfer of freshly isolated CD4+CD25+FoxP3+ Tregs derived from BALB/C (H-2d, host type), C57BL/6 (H-2b, donor type), FVB (H-2q, third-party) or BALB/B (H-2b, minor mismatched with the donor, major mismatched with the host) mice at the different Treg/Tcon ratios of 1:1, 1:2 and 1:4. As expected, donor Tregs exerted the strongest dose dependent GvHD protection (p = 0.028), while host Tregs did not improve mouse survival (p = 0.58). Third-party and minor mismatched with the donor Tregs improved mouse survival (third-party and minor mismatched with the donor respectively, p = 0.028 and p = 0.17) but mice had worse GvHD score profiles (both p< 0.001) and could not recover their weight as well as mice treated with donor Tregs (both p< 0.001). In vivoTcon bioluminescent imaging confirmed these results showing a reduced Tcon proliferation in mice treated with donor, third-party and minor mismatched with the donor Tregs, the first exerting the strongest effect (after 6 weeks of observation, p< 0.001). Conclusions Our studies indicate that MHC disparities between Tregs and Tcons do not represent an insurmountable barrier for Treg function. In vitro and in vivo data strongly suggest that Tregs can suppress Tcon proliferation without requiring MHC matching. In vivo GvHD prevention efficiency was affected by MHC disparities with donor derived Treg being the most effective, however, third party Treg also resulted in GvHD attenuation. These studies indicate that both donor and third party Treg could be effective in clinical application raising the possibility of screening and banking Treg for use. Further, these studies highlight the need for activation of the Treg on host tissues to effectively suppress conventional T cell proliferation and GvHD induction. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4057-4057 ◽  
Author(s):  
Kirsten Marie Boughan ◽  
Xiaohua Chen ◽  
Paul Szabolcs

Abstract Background: AML remains a disease diagnosed in the aging population with chemotherapy followed by bone marrow transplant in some cases being the standard of care. Although response rates remain around 50-60%, treatment related mortality and disease relapse remain high. Adoptive immunotherapy, especially those targeting T cell co-inhibitory receptors, has proven successful in solid malignancies however, AML remains less explored. Our laboratory has previously demonstrated the feasibility to generate autologous AML reactive T cells in vitro (Mehta/Szabolcs; Immunotherapy 2016). It was noted that "resistant" AML blasts over expressed a number of genes associated with immunosuppressive characteristics. Over expression of these genes may induce T cell functional exhaustion. Therefore, we hypothesized that blocking PD-1 and/or CTLA-4 during co-culture with IFNg activated AML blasts, may enhance T cell activation and cytotoxicity. To test this hypothesis, we tested CTL responses against AML blasts and IFNg ELISpot formation after blocking with PD-1, CTLA-4 or both receptors, and compared the response in untreated T cells. Gene expression profiles of co-stimulatory/co-inhibitory receptors were also monitored to test for correlation. Methods: We evaluated 12 patients with newly diagnosed AML under an IRB approved protocol with written informed consent of patients. Mononuclear cell preparation was generated from fresh marrow samples or drawn from a biorepository of previously cryopreserved leukophereses. T cells were then purified using immunomagnetic CD3/CD28 beads (Life technologies) and cultivated in media with IL-2 and IL-7 for 2 weeks. AML blasts were cultured over a supporting layer of mesenchymal stromal cells (MSCs) derived from healthy BM donors for 1 week and then cryopreserved. T cells were then co-cultured with restored and irradiated autologous AML cells at an effector: target (E: T) ratio of 5:1 to 40:1. AML and T cells were co-cultured in the presence of Ipilimumab (anti-CTLA-4), or Nivolumab (anti-PD-1), or a combination of both drugs. T cells and AML were re stimulated in X-vivo 15 with IL-12, IL-15 and IL-2 weekly x 3weeks. T cell response to AML was quantitated by IFNg ELISpot assay and Europium TDA (EuTDA) CTL assays independently. Co-stimulatory/co-inhibitory expression on T cells was examined with RT-q PCR assay. Paired-sample student t test was used for statistical analysis with p<0.05. Results and Discussion: Out of 12 samples, 10 (83%) yielded viable AML cells available for cytotoxicity assay. One third (33%) of co-cultures exhibited a positive T cell response in CTL assays ("killers"). There was no difference in CTL activity by blockade of either PD-1 or CTL-4 (Fig 1). IFN-ɣ spot formation in ELISpot was observed in 4/10 samples (40%) with statistical significance noted in cells blocked with PD-1 as compared to all other blockade types (Fig 2). The results indicated that in vitro priming with autologous AML blasts or together with blocking PD-1 can enhance T cell response in 33-40%. By gene expression analysis, the ratio of co-stimulatory to co-inhibitory genes was calculated. In PD-1 blocked cells, the ratio of activation/inhibition was not impacted in T cells from "killers" (0.9; p=0.1), however, T cells from "non-killer cells" had a diminished ratio due to higher expression of co-inhibitory molecules (0.4; p=0.04) (Fig 3). This trend was also present in CTLA-4 blocked cells (0.85; p=0.4 in killers vs 0.54; p=0.03 in non-killers) (data not shown). Interestingly, dual blockage failed to influence gene expression ratio, data not shown. Conclusion: The above studies demonstrate that cytotoxicity can be achieved in T cells when primed against autologous AML. PD-1 blockade can enhance IFNg production and cytotoxic responses, but CTLA-4 and dual blockade failed to enhance T cell function. The upregulation of an inhibitory pattern of genes in T cells that did not express cytotoxicity (non-killers) could allude to an "inhibitory phenotype" that may be resistant to immunotherapy drug blockade and requires further study. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document