scholarly journals Modification of mesenchymal stem cells by HMGB1 promotes the activity of Cav3.2 T-type calcium channel via PKA/β-catenin/γ-cystathionase pathway

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hao Wu ◽  
Xiaodong Xie ◽  
Mingyang Sun ◽  
Min Chen ◽  
Xuan Tao ◽  
...  

Abstract Background Mesenchymal stem cells (MSC) hold great promise for treating cardiovascular disease. Recently, we genetically modified MSCs with high mobility group box 1 (HMGB1), and these cells demonstrated high mobility by efficient migrating and homing to target neointima. The possible mechanism was investigated in the current study. Methods Rat MSCs were transfected with lentivirus containing HMGB1 cDNA to yield MSC-H cell line stably overexpressing HMGB1. The MSC-C cells which were transfected with empty lentivirus served as negative control, and the differentially expressed genes were analyzed by microarray. The cell mobility was determined by transwell migration assay. Intracellular free calcium and the expression of Cav3.2 T-type calcium channel (CACNA1H) were assayed to analyze activity of CACNA1H-mediated calcium influx. H2S production and γ-cystathionase expression were examined to assess the activity of γ-cystathionase/H2S signaling. The interaction of HMGB1 with γ-cystathionase in MSC-H cells was analyzed by co-immunoprecipitation. Luciferase reporter assay was performed to determine whether the promoter activity of γ-cystathionase was regulated by interaction of β-catenin and TCF/LEF binding site. Intercellular cAMP, PKA activity, phosphorylation of β-catenin, and GSK3β were investigated to reveal cAMP/PKA mediated β-catenin activation. Result Microarray analysis revealed that differentially expressed genes were enriched in cAMP signaling and calcium signaling. CACNA1H was upregulated to increase intracellular free calcium and MSC-H cell migration. Blockage of CACNA1H by ABT-639 significantly reduced intracellular free calcium and cell migration. The γ-cystathionase/H2S signaling was responsible for CACNA1H activation. H2S production was increased with high expression of γ-cystathionase in MSC-H cells, which was blocked by γ-cystathionase inhibitor DL-propargylglycine. Upregulation of γ-cystathionase was not attributed to interaction with HMGB1 overexpressed in MSC-H cells although γ-cystathionase was suggested to co-immunoprecipitate with oxidized HMGB1. Bioinformatics analysis identified a conserved TCF/LEF binding site in the promoter of γ-cystathionase gene. Luciferase reporter assay confirmed that the promoter had positive response to β-catenin which was activated in MSC-H cells. Finally, cAMP/PKA was activated to phosphorylate β-catenin at Ser657 and GSK3β, enabling persisting activation of Wnt/β-catenin signaling in MSC-H cells. Conclusion Our study revealed that modification of MSCs with HMGB1 promoted CACNA1H-mediated calcium influx via PKA/β-catenin/γ-cystathionase pathway. This was a plausible mechanism for high mobility of MSC-H cell line.

2021 ◽  
Author(s):  
Hao Wu ◽  
Xiaodong Xie ◽  
Mingyang Sun ◽  
Min Chen ◽  
Xuan Tao ◽  
...  

Abstract Background: Mesenchymal stem cells (MSC) hold great promise for treating cardiovascular disease. Recently, we genetically modified MSCs with high mobility group box 1 (HMGB1), and these cells demonstrated high mobility by efficient migrating and homing to target neointima. The possible mechanism was investigated in the current study. Methods: Rat MSCs were transfected with lentivirus containing HMGB1 cDNA to yield MSC-H cell line stably overexpressing HMGB1. The MSC-C cells which were transfected with empty lentivirus served as negative control, and the differentially expressed genes were analyzed by microarray. The cell mobility was determined by transwell migration assay. Intracellular free calcium and the expression of Cav3.2 T-type calcium channel (CACNA1H) were assayed to analyze activity of CACNA1H-mediated calcium influx. H2S production and γ-cystathionase expression were examined to assess the activity of γ-cystathionase/H2S signaling. The interaction of HMGB1 with γ-cystathionase in MSC-H cells was analyzed by co-immunoprecipitation. Luciferase reporter assay was performed to determine whether the promoter activity of γ-cystathionase was regulated by interaction of β-catenin and TCF/LEF binding site. Intercellular cAMP, PKA activity, phosphorylation of β-catenin and GSK3β were investigated to reveal cAMP/PKA mediated β-catenin activation. Result: Microarray analysis revealed that differentially expressed genes were enriched in cAMP signaling and calcium signaling. CACNA1H was upregulated to increase intracellular free calcium and MSC-H cell migration. Blockage of CACNA1H by ABT-639 significantly reduced intracellular free calcium and cell migration. The γ-cystathionase/H2S signaling was responsible for CACNA1H activation. H2S production was increased with high expression of γ-cystathionase in MSC-H cells, which was blocked by γ-cystathionase inhibitor DL-propargylglycine. Upregulation of γ-cystathionase was not attributed to interaction with HMGB1 overexpressed in MSC-H cells although γ-cystathionase was suggested to co-immunoprecipitate with oxidized HMGB1. Bioinformatics analysis identified a conserved TCF/LEF binding site in the promoter of γ-cystathionase gene. Luciferase reporter assay confirmed that the promoter had positive response to β-catenin which was activated in MSC-H cells. Finally, cAMP/PKA was activated to phosphorylate β-catenin at Ser657 and GSK3β, enabling persisting activation of Wnt/β-catenin signaling in MSC-H cells. Conclusion: Our study revealed that modification of MSCs with HMGB1 promoted CACNA1H-mediated calcium influx via PKA/β-catenin/γ-cystathionase pathway. This was a plausible mechanism for high mobility of MSC-H cell line.


2020 ◽  
Vol 318 (5) ◽  
pp. C848-C856 ◽  
Author(s):  
Rongfeng Shi ◽  
Yinpeng Jin ◽  
Weiwei Hu ◽  
Weishuai Lian ◽  
Chuanwu Cao ◽  
...  

More and more evidence advises that circular RNAs (circRNAs) function critically in regulating different disease microenvironments. Our previous study found that autotransplantation of adipose-derived mesenchymal stem cells (ADSCs) promotes diabetes wound healing. Exosomes derived in ADSCs play an important regulatory role. This study aimed to characterize if mmu_circ_0000250 played a role in ADSC-exosome-mediated full-thickness skin wound repair in diabetic rats. Endothelial progenitor cells (EPCs) were selected to study the therapeutic mechanism of exosomes in high-glucose (HG)-induced cell damage and dysfunction. Analysis and luciferase reporter assay were utilized to explore the interaction among mmu_circ_0000250, miRNA (miR)-128-3p, and sirtuin (SIRT)1. The diabetic rats were used to confirm the therapeutic effect of mmu_circ_0000250 against exosome-mediated wound healing. Exosomes containing a high concentration of mmu_circ_0000250 had a greater therapeutic effect on restoration of the function of EPCs by promotion autophagy activation under HG conditions. Expression of mmu_circ_0000250 promoted SIRT1 expression by miR-128-3p adsorption, which was confirmed via luciferase reporter assay and bioinformatics analysis. In vivo, exosomes containing a high concentration of mmu_circ_0000250 had a more therapeutic effect on wound healing when compared with wild-type exosomes from ADSCs. Immunohistochemistry and immunofluorescence detection showed that mmu_circ_0000250 increased angiopoiesis with exosome treatment in wound skin and suppressed apoptosis by autophagy activation. In conclusion, we verified that mmu_circ_0000250 enhanced the therapeutic effect of ADSC-exosomes to promote wound healing in diabetes by absorption of miR-128-3p and upregulation of SIRT1. Therefore, these findings advocate targeting the mmu_circ_0000250/miR-128-3p/SIRT1 axis as a candidate therapeutic option for diabetic ulcers.


2016 ◽  
Vol 38 (2) ◽  
pp. 809-820 ◽  
Author(s):  
Lei Yang ◽  
Dawei Ge ◽  
Xiaojian Cao ◽  
Yingbin Ge ◽  
Hongtao Chen ◽  
...  

Background/Aims: Postmenopausal osteoporosis is closely associated with reduction in the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Previous studies have demonstrated that miR-214 plays an important role in the genesis and development of postmenopausal osteoporosis. Here, we performed this study to investigate the potential mechanism by which miR-214 regulates osteoblast differentiation of MSCs. Methods: First, we explored the expression of miR-214 in MSCs of osteoporotic mice. Next, we examined the change of miR-214 during osteoblast differentiation of MSCs. Then, MSCs were infected with lentiviral vectors expressing miR-214 or miR-214 sponge to investigate the effect of miR-214 on osteoblast differentiation of MSCs. Further, bioinformatics analysis and luciferase reporter assay were performed to identify and validate the target gene of miR-214. Results: MiR-214 was up-regulated in MSCs of osteoporotic mice and down-regulated during osteoblast differentiation of MSCs. Furthermore, overexpression of miR-214 inhibited osteoblast differentiation of MSCs in vitro, whereas inhibition of miR-214 function promoted this process, evidenced by increased expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Bioinformatics, Western blot analysis and luciferase reporter assay demonstrated that FGFR1 is a direct target of miR-214. Conclusions: MiR-214 attenuates osteogenesis by inhibiting the FGFR1/FGF signaling pathway. Our findings suggest that targeting miR-214 promises to be a potential therapy in treatment of postmenopausal osteoporosis.


2021 ◽  
Author(s):  
Vitoria Pimentel da Silva ◽  
Laura Provenzi ◽  
Nicole Becker ◽  
Giovani Zocche ◽  
Gabriel Leal ◽  
...  

Introduction: Temporal Lobe Epilepsy (TLE) is a disorder caused by neuronal electrical imbalance, clinically manifested by spontaneous and recurrent seizures1,2. Its pathogenesis involves channelopathies of calcium channels, which contributes to hyperexcitability and hypersynchrony in TLE3 . About 30% of patients do not respond to drug treatment4 , making it necessary to develop new therapeutic alternatives, such as cell therapy. This work aimed to evaluate the modulation of mesenchymal stem cells (MSCs) in the calcium channel CACNA1G (Cav3.1) gene expression. Methods: MSCs were extracted from Wistar rats bone marrow and then cultured and transplanted intravenously and intranasally in the control and epileptic groups. The brain was collected 1 and 7 days after transplantation to analyze gene expression. Results: The analysis showed that treated animals had greater gene expression, compared to animals not treated in the epileptic and control group, in both days and administration routes. Furthermore, epileptic animals that were not treated had a low or negative expression of the gene. The epileptic rats that were treated, on the other hand, had a marked increase in gene expression e in the prefrontal cortex. Conclusion: This up-regulation noted on the treated groups raises the hypothesis that MSCs would be using these channels to modify the microenvironment5 , intensifying Cav.3.1 transcription and contributing to tissue regeneration by neurodifferentiation6,7. This is supported by the increase in the calcium influx present in the early stages of neuronal maturation8,9. Thus, MSCs can modulate gene expression in the pilocarpine-induced animal’s brain, making Cav3.1 a target to be explored in epilepsy.


2018 ◽  
Vol 47 (2) ◽  
pp. 545-555 ◽  
Author(s):  
Xumin Hu ◽  
Jianhua Tang ◽  
Xuyun Hu ◽  
Peng Bao ◽  
Jinxin Pan ◽  
...  

Background/Aims: In this study, the molecular mechanisms of miR-27b and lipoprotein lipase (LPL) that regulate human adipose-derived mesenchymal stem cells (hASCs) adipogenic differentiation were detected. Methods: Microarray analysis was applied to screen for differentially expressed miRNAs and mRNA during hASCs adipocyte differentiation induction. MiR-27b and LPL were found to have abnormal expression. Then, a dual luciferase reporter assay was employed to validate the targeting relationship between miR-27b and LPL. We also utilized qRT-PCR, western blot, cellular immunofluorescence and an oil red O staining assay to analyze the regulation of miR-27b and LPL during adipogenic differentiation. Results: The microarray analysis demonstrated that, during adipogenic differentiation, miR-27b was down-regulated, while LPL was up-regulated but tended to become stable 14 days after induction. A dual luciferase reporter assay confirmed the negative targeting regulatory relationship between miR-27b and LPL. After overexpressing and silencing miR-27b, LPL was found to be reversely regulated by miR-27b according to qRT-PCR and western blot. The fat-formation-related biomarkers CCAAT-enhancer binding protein α (c/EBPα) and peroxisome proliferator-activated receptors γ (PPARγ) had decreasing levels after over-expressing miR-27b or knockdown of LPL followed by adipogenic differentiation. Meanwhile, the oil red O staining assay revealed that the accumulation of lipid droplets decreased. There was no change in the expression of c/EBPα, PPARγ, or lipid droplet accumulation when overexpressing miR-27b and LPL. Conclusion: During the adipogenic differentiation of hASCs, miR-27b expression decreased, and LPL expression increased. The abnormal expression of miR-27b and LPL effectively regulated the adipogenic differentiation of hASCs.


2017 ◽  
Vol 41 (2) ◽  
pp. 530-542 ◽  
Author(s):  
Huaqing Wang ◽  
Zhao Xie ◽  
Tianyong Hou ◽  
Zhiqiang Li ◽  
Ke Huang ◽  
...  

Background/Aims: Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a crucial role in bone regeneration and bone reparation. This complex process is regulated precisely and firmly by specific factors. Recent studies have demonstrated that miR-125b regulates osteogenic differentiation, but little is known about the molecular mechanisms of this regulation. Furthermore, how miR-125b regulates the osteogenic differentiation of MSCs still needs elucidation. Methods: In the present study, human bone marrow-derived mesenchymal stem cells (hBMSCs) were isolated and induced to osteoblasts with miR-125b inhibition or overexpression. qRT-PCR and western blot analysis were used to detect the expression of osteogenic marker genes and proteins. Alkaline phosphatase (ALP) and Alizarin Red (ARS) staining were performed to evaluate the osteoblast phenotype. TargetScan, PicTar and miRanda database were used to predict the target gene of miR-125b. Dual luciferase reporter assay and RNA interference were performed to verify the target gene. Micro-CT imaging and histochemical staining were used to investigate the bone defect repair capacity of miR-125b in vivo. Results: We observed that miR-125b was expressed at a low level during the osteogenic differentiation of hBMSCs. Then, we found that osteogenic marker genes were negatively regulated by miR-125b during the course of osteogenic differentiation, suggesting that miR-125b down regulation plays an important role in the process of osteogenic differentiation. Bioinformatics approaches using miRNA target prediction algorithms indicated that the bone morphogenetic protein type Ib receptor (BMPR1b) is a potential target of miR-125b. The results of the dual luciferase reporter assay indicated that miR-125b binds to the 3’-UTR of the BMPR1b gene. We observed that knockdown of BMPR1b by siRNA inhibited the osteogenic differentiation of hBMSCs. Furthermore, by co-transfecting cells with an miR-125b inhibitor and si-BMPR1b, we found that the osteogenic capacity of the cells transfected with miR-125b inhibitor was blocked upon knockdown of BMPR1b. In vivo, demineralized bone matrix (DBM) was composited with hBMSCs as a scaffold to repair segmental femoral defects. By inhibiting the expression of miR-125b, hBMSCs showed a better capacity to repair bone defects. Conclusions: Taken together, our study demonstrated that miR-125b regulated the osteogenic differentiation of hBMSCs by targeting BMPR1b and that inhibiting miR-125b expression could enhance the capacity of bone defect repair in vivo.


2021 ◽  
Author(s):  
hui cheng ◽  
Jie Ding ◽  
Gusheng Tang ◽  
Aijie Huang ◽  
Lei Gao ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is a malignancy commonly seen in adults. Previous studies indicated that TRIM14 played a tumorigenic role in various types of cancer and miR-23b-5p was down-regulated in human mesenchymal stem cell-derived exosomes (HMSC-exos) of AML patients. However, their roles in AML remains unclear. Our study aims to investigate the role of TRIM14 and miR-23b-5p in the pathogenesis of AML.Materials and methods: The blood specimen was collected from AML patients and healthy donators. Exosomes were extracted from the culture medium of human mesenchymal stem cells under ultracentrifugation. Then exosomes were co-cultured with AML cells to determine the effect of their contents. The cell proliferation was detected by cell counting kit-8 assay, whereas the cell apoptosis was detected by flow cytometry. The expression of miR-23b-5p and TRIM14 was silenced or overexpressed to explore their biological functions in AML. Luciferase reporter assay was conducted to validate the interaction between miR-23b-5p and TRIM14. Gene expression was determined by quantitative real-time PCR and immunoblots.Results: TRIM14 was significantly increased in AML patients and cell lines. The inhibition of TRIM14 significantly reduced the proliferation and induced the apoptosis of AML cells via activating PI3K/AKT pathway, whereas its overexpression exhibited reversed effects. HMSC-exos could suppress the proliferation of AML cells through the delivery of miR-23b-5p. Moreover, miR-23b-5p inhibited the transcription of TRIM14 by binding on its 3’UTR region. Overexpression of TRIM14 exhibited reversed effect against the function of miR-23b-5p mimic.Conclusion: TRIM14 could promote the proliferation of AML cells via activating PI3K/AKT pathway, which was reversed by HMSC-exos through delivering miR-23b-5p. These findings indicated that miR-23b-5p and TRIM14 could be applied as potential targets for the treatment of AML.


2020 ◽  
Author(s):  
Yijing Chu ◽  
Yan Zhang ◽  
Guoqiang Gao ◽  
Jun Zhou ◽  
Yang Lv ◽  
...  

Abstract Background: Human chorionic villous mesenchymal stem cells (CV-MSCs) are found to be a promising and effective treatment for tissue injury. Trophoblast dysfunction during pregnancies is significantly involved in the pathogenesis of preeclampsia (PE). This work was to understand how CV-MSCs regulated trophoblast function. Methods: In this study, we treated trophoblasts with CV-MSC-derived exosomes and RNA-seq analysis was used to understand the changes in trophoblasts. We examined the levels of TXNIP and β-catenin in trophoblasts by immunohistochemistry, western blot and qRT-PCR assays. Luciferase reporter assays and qRT-PCR assays were used to understand the role of miR135b-5p in the effects of CV-MSC-derived exosomes. The growth and invasion of trophoblasts was evaluated with the CCK-8 and transwell assays. Results: The treatment markedly enhanced the trophoblast proliferation and invasion. Furthermore, a significant decrease of TXNIP expression and inactivation of the β-catenin pathway in CV-MSCs exosomes-treated trophoblasts was observed. Consistent with these findings, TXNIP inhibition exhibited the same effect of promoting trophoblast proliferation and invasion as induced by CV-MSC-derived exosomes, also with the accompaniment of inactivation of β-catenin pathway. In addition, overexpression of TXNIP activated the β-catenin pathway in trophoblasts, and reduced the proliferation and invasion of trophoblasts. Importantly, miR135b-5p was found to be highly expressed in CV-MSC exosomes and interact with TXNIP. The miR-135b-5p overexpression significantly elevated the proliferation and invasion of trophoblasts, which could be attenuated by TXNIP overexpression. Conclusion: Our results suggest that TXNIP-dependent β-catenin pathway inactivation mediated by miR135b-5p which is delivered by CV-MSC-derived exosomes could promote the proliferation and invasion of trophoblasts.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Susumu Yamaguchi ◽  
Nobutaka Horie ◽  
Katsuya Satoh ◽  
Yoichi Morofuji ◽  
Tsuyoshi Izumo ◽  
...  

Background and purpose: Cell transplantation therapy holds great potential to improve impairments after stroke. However, the importance of donor age on therapeutic efficacy is uncertain. We investigate regenerative capacity of transplanted cells focusing on donor age (young vs. old) for ischemic stroke. Methods: The value of platelet-derived growth factor (PDGF)-BB secreted from human mesenchymal stem cells (hMSC) was analyzed regarding in two age groups; young (20-30 years) and old (57-65 years) in vitro. Male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion, and received young or old hMSC trans-arterially at 24 h after stroke. Functional recovery was assessed with modified neurological severity score (mNSS). Structural recovery was assessed on neovascularization and endogenous cell migration as well as trophic factor secretion. Results: The value of PDGF-BB was significantly higher in young hMSC (40.47±4.29 pg/ml/10 4 cells) than that in old hMSC (25.35±3.16 pg/ml/10 4 cells; P =0.02) and negatively correlated with age ( P =0.048, r=-0.79, Spearman). Rats treated with young hMSC (3.7±0.6) showed better behavior recovery in mNSS with prevention of brain atrophy than that with control (6.1±0.5) or old (5.2±0.7) at D21 ( P <0.01). The number of RECA-1 and PDGFR-β double positive vessels in rat with young hMSC (113±48.6/mm 2 ) was higher than that in control (61.5±35.9/mm 2 ) or old (76.9±36.9/mm 2 ) suggesting vessel maturation ( P <0.01). Interestingly, migration of neural stem/progenitor cells expressing Musashi-1 positively correlated with astrocyte process alignment ( P <0.01, r=0.27; Spearman), which was more pronounced in young hMSC ( P <0.05). Conclusions: Aging of hMSC may be the critical factor which affects outcome of cell therapy, and transplantation of young hMSC could provide better functional recovery by vessel maturation and endogenous cell migration potentially due to dominance of trophic factor secretion.


Sign in / Sign up

Export Citation Format

Share Document