scholarly journals Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes

2022 ◽  
Vol 53 (1) ◽  
Author(s):  
Yuru Guo ◽  
Chengcheng Huang ◽  
Hongyu Su ◽  
Zehui Zhang ◽  
Menghan Chen ◽  
...  

AbstractTrueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0–97.7% and 36.5–71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10–5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.

2019 ◽  
Vol 6 (10) ◽  
Author(s):  
Zekun Li ◽  
Yuping Cao ◽  
Lingxian Yi ◽  
Jian-Hua Liu ◽  
Qiwen Yang

Abstract Until recently, the polymyxin antibiotics were used sparingly due to dose limiting toxicities. However, the lack of therapeutic alternatives for infections caused by highly resistant Gram-negative bacteria has led to the increased use of the polymyxins. Unfortunately, the world has witnessed increased rates of polymyxin resistance in the last decade, which is likely in part due to its irrational use in human and veterinary medicine. The spread of polymyxin resistance has been aided by the dissemination of the transferable polymyxin-resistance gene, mcr, in humans and the environment. The mortality of colistin-resistant bacteria (CoRB) infections varies in different reports. However, poor clinical outcome was associated with prior colistin treatment, illness severity, complications, and multidrug resistance. Detection of polymyxin resistance in the clinic is possible through multiple robust and practical tests, including broth microdilution susceptibility testing, chromogenic agar testing, and molecular biology assays. There are multiple risk factors that increase a person’s risk for infection with a polymyxin-resistant bacteria, including age, prior colistin treatment, hospitalization, and ventilator support. For patients that are determined to be infected by polymyxin-resistant bacteria, various antibiotic treatment options currently exist. The rising trend of polymyxin resistance threatens patient care and warrants effective control.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 65
Author(s):  
Armin Tarrah ◽  
Shadi Pakroo ◽  
Viviana Corich ◽  
Alessio Giacomini

The existence of antibiotic-resistant bacteria in food products, particularly those carrying acquired resistance genes, has increased concerns about the transmission of these genes from beneficial microbes to human pathogens. In this study, we evaluated the antibiotic resistance-susceptibility patterns of 16 antibiotics in eight S. thermophilus strains, whose genome sequence is available, using phenotypic and genomic approaches. The minimal inhibitory concentration values collected revealed intermediate resistance to aminoglycosides, whereas susceptibility was detected for different classes of β-lactams, quinolones, glycopeptide, macrolides, and sulfonamides in all strains. A high tetracycline resistance level has been detected in strain M17PTZA496, whose genome analysis indicated the presence of the tet(S) gene and the multidrug and toxic compound extrusion (MATE) family efflux pump. Moreover, an in-depth genomic analysis revealed genomic islands and an integrative and mobilizable element (IME) in the proximity of the gene tet(S). However, despite the presence of a prophage, genomic islands, and IME, no horizontal gene transfer was detected to Lactobacillus delbrueckii subsp. lactis DSM 20355 and Lactobacillusrhamnosus GG during 24 h of skim milk fermentation, 2 weeks of refrigerated storage, and 4 h of simulated gastrointestinal transit.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 311
Author(s):  
Chen Chen ◽  
Weili Hong

Due to the inappropriate use and overuse of antibiotics, the emergence and spread of antibiotic-resistant bacteria are increasing and have become a major threat to human health. A key factor in the treatment of bacterial infections and slowing down the emergence of antibiotic resistance is to perform antimicrobial susceptibility testing (AST) of infecting bacteria rapidly to prescribe appropriate drugs and reduce the use of broad-spectrum antibiotics. Current phenotypic AST methods based on the detection of bacterial growth are generally reliable but are too slow. There is an urgent need for new methods that can perform AST rapidly. Bacterial metabolism is a fast process, as bacterial cells double about every 20 to 30 min for fast-growing species. Moreover, bacterial metabolism has shown to be related to drug resistance, so a comparison of differences in microbial metabolic processes in the presence or absence of antimicrobials provides an alternative approach to traditional culture for faster AST. In this review, we summarize recent developments in rapid AST methods through metabolic profiling of bacteria under antibiotic treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marloes Heijne ◽  
Martina Jelocnik ◽  
Alexander Umanets ◽  
Michael S. M. Brouwer ◽  
Annemieke Dinkla ◽  
...  

AbstractChlamydia gallinacea is an obligate intracellular bacterium that has recently been added to the family of Chlamydiaceae. C. gallinacea is genetically diverse, widespread in poultry and a suspected cause of pneumonia in slaughterhouse workers. In poultry, C. gallinacea infections appear asymptomatic, but studies about the pathogenic potential are limited. In this study two novel sequence types of C. gallinacea were isolated from apparently healthy chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and have at least 99.5% DNA sequence identity to C. gallinacea Type strain 08-1274/3. To gain further insight into the pathogenic potential, infection experiments in embryonated chicken eggs and comparative genomics with Chlamydia psittaci were performed. C. psittaci is a ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in severe systemic illness. In experiments with embryonated chicken eggs, C. gallinacea induced mortality was observed, potentially strain dependent, but lower compared to C. psittaci induced mortality. Comparative analyses confirmed all currently available C. gallinacea genomes possess the hallmark genes coding for known and potential virulence factors as found in C. psittaci albeit to a reduced number of orthologues or paralogs. The presence of potential virulence factors and the observed mortality in embryonated eggs indicates C. gallinacea should rather be considered as an opportunistic pathogen than an innocuous commensal.


2011 ◽  
Vol 56 (3) ◽  
pp. 1414-1417 ◽  
Author(s):  
Jien-Wei Liu ◽  
Wen-Chien Ko ◽  
Cheng-Hua Huang ◽  
Chun-Hsing Liao ◽  
Chin-Te Lu ◽  
...  

ABSTRACTThe TigecyclineIn VitroSurveillance in Taiwan (TIST) study, initiated in 2006, is a nationwide surveillance program designed to longitudinally monitor thein vitroactivity of tigecycline against commonly encountered drug-resistant bacteria. This study compared thein vitroactivity of tigecycline against 3,014 isolates of clinically important drug-resistant bacteria using the standard broth microdilution and disk diffusion methods. Species studied included methicillin-resistantStaphylococcus aureus(MRSA;n= 759), vancomycin-resistantEnterococcus faecium(VRE;n= 191), extended-spectrum β-lactamase (ESBL)-producingEscherichia coli(n= 602), ESBL-producingKlebsiella pneumoniae(n= 736), andAcinetobacter baumannii(n= 726) that had been collected from patients treated between 2008 and 2010 at 20 hospitals in Taiwan. MICs and inhibition zone diameters were interpreted according to the currently recommended U.S. Food and Drug Administration (FDA) criteria and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. The MIC90values of tigecycline against MRSA, VRE, ESBL-producingE. coli, ESBL-producingK. pneumoniae, andA. baumanniiwere 0.5, 0.125, 0.5, 2, and 8 μg/ml, respectively. The total error rates between the two methods using the FDA criteria were high: 38.4% for ESBL-producingK. pneumoniaeand 33.8% forA. baumannii. Using the EUCAST criteria, the total error rate was also high (54.6%) forA. baumanniiisolates. The total error rates between these two methods were <5% for MRSA, VRE, and ESBL-producingE. coli. For routine susceptibility testing of ESBL-producingK. pneumoniaeandA. baumanniiagainst tigecycline, the broth microdilution method should be used because of the poor correlation of results between these two methods.


2017 ◽  
Vol 22 (6) ◽  
pp. 585-608 ◽  
Author(s):  
Yiyan Li ◽  
Xing Yang ◽  
Weian Zhao

Rapid bacterial identification (ID) and antibiotic susceptibility testing (AST) are in great demand due to the rise of drug-resistant bacteria. Conventional culture-based AST methods suffer from a long turnaround time. By necessity, physicians often have to treat patients empirically with antibiotics, which has led to an inappropriate use of antibiotics, an elevated mortality rate and healthcare costs, and antibiotic resistance. Recent advances in miniaturization and automation provide promising solutions for rapid bacterial ID/AST profiling, which will potentially make a significant impact in the clinical management of infectious diseases and antibiotic stewardship in the coming years. In this review, we summarize and analyze representative emerging micro- and nanotechnologies, as well as automated systems for bacterial ID/AST, including both phenotypic (e.g., microfluidic-based bacterial culture, and digital imaging of single cells) and molecular (e.g., multiplex PCR, hybridization probes, nanoparticles, synthetic biology tools, mass spectrometry, and sequencing technologies) methods. We also discuss representative point-of-care (POC) systems that integrate sample processing, fluid handling, and detection for rapid bacterial ID/AST. Finally, we highlight major remaining challenges and discuss potential future endeavors toward improving clinical outcomes with rapid bacterial ID/AST technologies.


1980 ◽  
Vol 1 (06) ◽  
pp. 391-400 ◽  
Author(s):  
Donald A. Goldmann ◽  
Ann B. Macone

This article details the appropriate microbiologic support that is critical to the successful investigation of nosocomial infection problems. The infection control team must have ready access to microbiologic data, and the laboratory should retain epidemiologically relevant bacterial isolates. Investigation of epidemics is facilitated by precise identification of bacteria and careful antibiotic susceptibility testing. In some situations, biotyping, serotyping, phage typing, bacteriocin typing, and other specialized techniques may be required. Plasmid analysis may be useful in the investigation of nosocomial infection problems caused by antibiotic-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document