scholarly journals Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO2

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Yang ◽  
Junli Zhang ◽  
Zhen Cai ◽  
Jie Zhou ◽  
Yin Li

AbstractThe oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.

2021 ◽  
Author(s):  
Fan Yang ◽  
Junli Zhang ◽  
Zhen Cai ◽  
Jie Zhou ◽  
Yin Li

Abstract The oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 999-1007
Author(s):  
R G Gregerson ◽  
L Cameron ◽  
M McLean ◽  
P Dennis ◽  
J Strommer

Abstract In most higher plants the genes encoding alcohol dehydrogenase comprise a small gene family, usually with two members. The Adh1 gene of Petunia has been cloned and analyzed, but a second identifiable gene was not recovered from any of three genomic libraries. We have therefore employed the polymerase chain reaction to obtain the major portion of a second Adh gene. From sequence, mapping and northern data we conclude this gene encodes ADH2, the major anaerobically inducible Adh gene of Petunia. The availability of both Adh1 and Adh2 from Petunia has permitted us to compare their structures and patterns of expression to those of the well-studied Adh genes of maize, of which one is highly expressed developmentally, while both are induced in response to hypoxia. Despite their evolutionary distance, evidenced by deduced amino acid sequence as well as taxonomic classification, the pairs of genes are regulated in strikingly similar ways in maize and Petunia. Our findings suggest a significant biological basis for the regulatory strategy employed by these distant species for differential expression of multiple Adh genes.


1996 ◽  
Vol 93 (22) ◽  
pp. 12637-12642 ◽  
Author(s):  
J. R. Pear ◽  
Y. Kawagoe ◽  
W. E. Schreckengost ◽  
D. P. Delmer ◽  
D. M. Stalker

2004 ◽  
Vol 31 (7) ◽  
pp. 721 ◽  
Author(s):  
Steven J. Sinclair ◽  
Richard Johnson ◽  
John D. Hamill

We determined the capacity of three Nicotiana (Solanaceae) species with very different alkaloid profiles (Nicotiana sylvestris Speg & Comes, Nicotiana alata Link & Otto and Nicotiana glauca Grah.) to increase their alkaloid contents in both leaf and root tissues following foliage damage. We also investigated the transcriptional responses of genes encoding enzymes important for alkaloid biosynthesis, namely quinolinate phosphoribosyltransferase (QPT), putrescine N-methyltransferase (PMT), ornithine decarboxylase (ODC) and the putative alkaloid biosynthetic gene A622. In response to wounding of foliage in the well studied ‘model’ species N. sylvestris, a rise, approximately 2-fold, in leaf nicotine levels was observed several days after a 4–5-fold increase in the transcript levels of all genes in the roots. In contrast, leaf tissues of the ornamental tobacco N. alata showed very low levels of any pyridine alkaloid, even when analysed 1 week after wounding, correlating with a general lack of transcript abundance representing any of these genes in leaves or roots following foliage damage. However, addition of methyl jasmonate to cultured roots of N. alata did produce elevated levels of nicotine and anatabine raising the possibility that components of the leaf–root wound signalling system in N. alata are different from those in N. sylvestris. Wounding of the tree tobacco N. glauca, was followed by a 2-fold increase in anabasine levels several days later. This increase followed a large rise in transcript levels of ODC, QPT and A622, though not PMT, in wounded leaves, but not in non-wounded leaves or roots. These data support the hypothesis that N. glauca is able to produce increased anabasine levels following wounding in its foliage, setting it apart from N. sylvestris where induced alkaloid production takes place in roots. We discuss the possibility that increased transcript levels detected by ODC and A622 probes play important roles in anabasine synthesis in N. glauca.


Substantial incorporation of 18 O 2 into photorespiratory carbon oxidation cycle intermediates in illuminated Spinacia oleracea leaves confirms that oxygenase activity of the enzyme ribulose biphosphate carboxylase–oxygenase is a major source of glycollate in illuminated leaves. No 18 O 2 incorporation into oxalate was detected in these experiments, although 13 C incorporation from 13 CO 2 shows that oxalate synthesis is occurring under the experimental conditions. This result tends to minimize the role of a direct oxidation of glyoxylate derived (via phosphoglycollate and glycollate) from ribulose biphosphate oxygenase activity in oxalate synthesis in Spinacia . Measurements of δ 13 C show (in confirmation of earlier reports) that oxalate from Spinacia is less depleted in 13 C than is bulk organic C in the plant; it is possible the phosphoenolpyruvate carboxylase is involved in the production of the oxalate precursor. Of the plants tested, Mercurialis and Pelargonium shared with Spinacia the high δ 13 C value, while Chenopodium (closely related to Spinacia ), Oxalis (more distantly related to Pelargonium ) and two members of the Polygonaceae had oxalate δ 13 C values close to the whole-leaf δ 13 C value, which suggests derivation of both oxalate C atoms from carboxylase activity of the enzyme ribulose biphosphate carboxylase–oxygenase.


Sign in / Sign up

Export Citation Format

Share Document