scholarly journals Anti-tumor effect of polysaccharide from Pleurotus ostreatus on H22 mouse Hepatoma ascites in-vivo and hepatocellular carcinoma in-vitro model

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kavish Hasnain Khinsar ◽  
Sattar Abdul ◽  
Akbar Hussain ◽  
Riaz Ud Din ◽  
Liu Lei ◽  
...  

AbstractHepatocellular carcinoma is one of the leading causes of cancer-associated death across the globe. Malignant ascites are the major clinical attributes in cancer patients. Despite the advancements in HCC treatments such as chemotherapy, radiotherapy, surgery, and hormonal therapy, researchers are pursuing novel natural edible compounds for the treatment of cancer to eliminate dreadful side effects. Pleurotus ostreatus is one of the most edible cuisines in Asia as well as all over the world. It has been a source of nutritious diet since it was classified as an edible mushroom with no or negligible side effects. The present study focused on the natural anti-cancerous and anti-ascites capabilities of polysaccharides extracted from Pleurotus ostreatus in-vivo as well as in-vitro. Administration of polysaccharide Pleurotus ostreatus showed a significant decrease in tumor cell metastasis while the increase in the survival period among mice models of H22 malignant ascites. Downregulation of regenerative genes Foxp3 and Stat3 and secretion of immunological factors such as IL-2, TNF α, and INF γ were observed after treating with the partially pure extracted polysaccharide. Twining with the hypothesis of tumor suppression in-vivo model polysaccharide showed a decrease in invasion and migration abilities and henceforth responsible for the gene regulation such Cytochrome C which supposedly induced the chain of gene regulation process resulting in apoptosis in HCC cell lines observed in-vitro experiments. Collective research findings manifested that polysaccharide extracted from Pleurotus ostreatus bears anti-proliferative activity and thus influence tumor suppression in-vivo and in-vitro against hepatocellular carcinoma and can be used for therapeutic purposes as a potential anti-cancerous source in the future.

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Hend Maarof Tag ◽  
Ahlem Bargougui ◽  
Sara Gamal Alshayyal ◽  
Amany Kamal ◽  
Hekmat M. Tantawy ◽  
...  

Punica granatum (POM) and Silybum marianum (MT) receiving attention as potential potent anti-oxidant and anti-mutant agents. In this context, the present study was designed to highlight their effects either in vitro as well as in vivo model of induced Hepatocellular carcinoma (HCC). Human hepatoma (HepG2 cells) were treated with MT and POM to explore their antitumor activity then in vivo were carried out on thirty-six male albino rats divided into six groups (n=6). Two weeks after induction of HCC, rats were co-treated with either MT or POM ethanolic extract (500 mg/kg, orally) daily for 8 weeks. The results displayed marked reduction in the viability of HepG2 cells with IC50 equal to 48.4 and 8.6 μg/mL of POM and MT treatment respectively. Considering, in vivo experiment HCC group displayed significant elevation liver function indices (p<0.05). It also elicited depletion of liver reduced glutathione (GSH), and increased content of liver malondialdehyde (MDA) compared to control group. HCC was proved after a significantly elevated alpha-fetoprotein (AFP) level (p<0.05). All of these measurements were diminished significantly after POM and MT treatments, except the GSH level that was increased significantly. Supplementation of pomegranate and milk thistle extracts had a protective effect against chemically induced HCC. 


Author(s):  
Kouidri Mokhtaria ◽  
Selles Sidi Mohammed Ammar

At present, surgery remains the preferred treatment for hydatid cyst. Various chemical scolicidal agents have been used for inactivation of protoscoleces during surgery, but most of them are associated with adverse side effects. In this study we investigated the effect of two commercial grape and apple vinegar on the viability of hydatid cyst protoscoleces. The protoscoleces of E. granulosus were aspirated from the infected livers and lungs of sheep slaughtered at Tiaret abattoir. 0.5 mL of two commercial grape and apple vinegar was used for 5, 10, and 15 min in the experiments. 0.1% eosin staining assessed viability of protoscoleces. All tests were carried in triplicate. The mortality rates of protoscoleces were 100% after 5min, 10 min and 15 min of incubation with grape vinegar and apple vinegar. To conclude, the results of the present survey indicated high scolicidal activity of apple vinegar and grape vinegar against protoscoleces of hydatid cyst and can be used in hydatid cyst surgery. However, further studies will be needed to confirm these results by checking this scolicidal activity in an in-vivo model.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3620-3620
Author(s):  
Siao- Yi Wang ◽  
Jeffrey Cagley ◽  
David Fritzinger ◽  
Carl-Wilhelm Vogel ◽  
William St. John ◽  
...  

Abstract Antibody-dependent cellular cytotoxicity (ADCC) is felt to play an important role in mediating the anti-tumor effects of Rituximab (R). We previously reported that C3b deposition on R-coated target cells interferes with the binding of the Fc portion of R to NK cell CD16. This interaction inhibits the activation of NK cells and NK cell-mediated ADCC of 51Cr-labeled R-coated target cells. The current studies were designed to determine whether C3 depletion enhances the ability of mAb-coated targets to activate NK cells in vitro and improves mAb therapy in vivo. Normal human serum inhibited the ability of R-coated lymphoma cells to activate NK cells as previously reported. NK activation was increased when serum was pre-incubated with cobra venom factor (CVF) to deplete C3. Similar results were found when non-malignant ascites or transudative pleural fluid, as a surrogate for extravascular fluid, was used as the source of complement. For in vivo analysis, we utilized a syngeneic, immunocompetent murine model in which ADCC has been previously demonstrated to be a key mechanism of action. CVF or a human C3 derivative with CVF-like functions (HC3-1496) was used to deplete C3 in vivo. In this model, C3H/HeN mice were inoculated with murine 38C13 lymphoma cells (day 0) and treated with 2 doses of CVF or HC3-1496 (day 3 and day 5). Four hours after the initial dose of CVF or HC3-1496, mice were treated with a single dose of an anti-lymphoma mAb directed against the 38C13 idiotype (MS11G6). Untreated mice all developed tumor and died with a median survival of 28 days. All mice treated with mAb alone eventually developed tumor and died with a median survival of 42 days. Survival following treatment with CVF plus mAb was superior to that of mAb alone (Fig 1, p=0.0312) with 50% of mice remaining tumor free. Survival following treatment with HC3-1496 plus mAb was also superior to that of mAb alone (Fig 2, p=0.0002) with 80% of mice remaining tumor free. In summary, depletion of the C3 component of complement enhanced the ability of R-coated target cells to activate human NK cells, and improved the efficacy of mAb therapy in an in vivo model of lymphoma. Furthermore, these studies suggest the inhibitory effects of complement on NK activation and ADCC may be seen in the extravascular compartment such as within involved lymph nodes. We conclude that depletion of complement through use of agents such as CVF or HC3-1496 could be considered as an approach to enhancing the efficacy of R therapy. Figure Figure Figure Figure


1977 ◽  
Vol 37 (01) ◽  
pp. 154-161 ◽  
Author(s):  
B. A Janik ◽  
S. E Papaioannou

SummaryUrokinase, streptokinase, Brinase, trypsin, and SN 687, a bacterial exoprotease, have been evaluated in an ex vivo assay system. These enzymes were injected into rabbits and the fibrinolytic activity as well as other coagulation parameters were measured by in vitro techniques. Dose-response correlations have been made using the euglobulin lysis time as a measure of fibrinolytic activity and the 50% effective dose has been determined for each enzyme. Loading doses, equal to four times the 50% effective dose, were administered to monitor potential toxicity revealing that Brinase, trypsin, and SN 687 were very toxic at this concentration.Having established the 50% effective dose for each enzyme, further testing was conducted where relevant fibrinolytic and coagulation parameters were measured for up to two days following a 50% effective dose bolus injection of each enzyme. Our results have demonstrated that urokinase and streptokinase are plasminogen activators specifically activating the rabbit fibrinolytic system while Brinase, trypsin and SN 687 increase the general proteolytic activity in vivo.The advantages of this ex vivo assay system for evaluating relative fibrinolytic potencies and side effects for plasminogen activators and fibrinolytic proteases have been discussed.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1424
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Joonhong Park ◽  
Donghwan Kang ◽  
Kyunghee Byun

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


Sign in / Sign up

Export Citation Format

Share Document