scholarly journals Identification and authentication for wireless transmission security based on RF-DNA fingerprint

Author(s):  
Xueli Wang ◽  
Yufeng Zhang ◽  
Hongxin Zhang ◽  
Xiaofeng Wei ◽  
Guangyuan Wang

Abstract For wireless transmission, radio-frequency device anti-cloning has become a major security issue. Radio-frequency distinct native attribute (RF-DNA) fingerprint is a developing technology to find the difference among RF devices and identify them. Comparing with previous research, (1) this paper proposed that mean (μ) feature should be added into RF-DNA fingerprint. Thus, totally four statistics (mean, standard deviation, skewness, and kurtosis) were calculated on instantaneous amplitude, phase, and frequency generated by Hilbert transform. (2) We first proposed using the logistic regression (LR) and support vector machine (SVM) to recognize such extracted fingerprint at different signal-to-noise ratio (SNR) environment. We compared their performance with traditional multiple discriminant analysis (MDA). (3) In addition, this paper also proposed to extract three sub-features (amplitude, phase, and frequency) separately to recognize extracted fingerprint under MDA. In order to make our results more universal, additive white Gaussian noise was adopted to simulate the real environment. The results show that (1) mean feature conducts an improvement in the classification accuracy, especially in low SNR environment. (2) MDA and SVM could successfully identify these RF devices, and the classification accuracy could reach 94%. Although the classification accuracy of LR is 89.2%, it could get the probability of each class. After adding a different noise, the recognition accuracy is more than 80% when SNR≥5 dB using MDA or SVM. (3) Frequency feature has more discriminant information. Phase and amplitude play an auxiliary but also pivotal role in classification recognition.

Author(s):  
Shikhar P. Acharya ◽  
Ivan G. Guardiola

Radio Frequency (RF) devices produce some amount of Unintended Electromagnetic Emissions (UEEs). UEEs are generally unique to a device and can be used as a signature for the purpose of detection and identification. The problem with UEEs is that they are very low in power and are often buried deep inside the noise band. The research herein provides the application of Support Vector Machine (SVM) for detection and identification of RF devices using their UEEs. Experimental Results shows that SVM can detect RF devices within the noise band, and can also identify RF devices using their UEEs.


Phishing is one among the luring procedures used by phishing attackers in the means to abuse the personal details of clients. Phishing is earnest cyber security issue that includes facsimileing legitimate website to apostatize online users so as to purloin their personal information. Phishing can be viewed as special type of classification problem where the classifier is built from substantial number of website's features. It is required to identify the best features for improving classifiers accuracy. This study, highlights on the important features of websites that are used to classify the phishing website and form the legitimate ones by presenting a scheme Decision Tree Least Square Twin Support Vector Machine (DT-LST-SVM) for the classification of phishing website. UCI public domain benchmark website phishing dataset was used to conduct the experiment on the proposed classifier with different kernel function and calculate the classification accuracy of the classifiers. Computational results show that DT-LST-SVM scheme yield the better classification accuracy with phishing websites classification dataset


Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 338
Author(s):  
Arfan Haider Wahla ◽  
Lan Chen ◽  
Yali Wang ◽  
Rong Chen

Automatic Classification of Wireless Signals (ACWS), which is an intermediate step between signal detection and demodulation, is investigated in this paper. ACWS plays a crucial role in several military and non-military applications, by identifying interference sources and adversary attacks, to achieve efficient radio spectrum management. The performance of traditional feature-based (FB) classification approaches is limited due to their specific input feature set, which in turn results in poor generalization under unknown conditions. Therefore, in this paper, a novel feature-based classifier Neural-Induced Support Vector Machine (NSVM) is proposed, in which the features are learned automatically from raw input signals using Convolutional Neural Networks (CNN). The output of NSVM is given by a Gaussian Support Vector Machine (SVM), which takes the features learned by CNN as its input. The proposed scheme NSVM is trained as a single architecture, and in this way, it learns to minimize a margin-based loss instead of cross-entropy loss. The proposed scheme NSVM outperforms the traditional softmax-based CNN modulation classifier by managing faster convergence of accuracy and loss curves during training. Furthermore, the robustness of the NSVM classifier is verified by extensive simulation experiments under the presence of several non-ideal real-world channel impairments over a range of signal-to-noise ratio (SNR) values. The performance of NSVM is remarkable in classifying wireless signals, such as at low signal-to-noise ratio (SNR), the overall averaged classification accuracy is > 97% at SNR = −2 dB and at higher SNR it achieves overall classification accuracy at > 99%, when SNR = 10 dB. In addition to that, the analytical comparison with other studies shows the performance of NSVM is superior over a range of settings.


Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 194
Author(s):  
Sarah Gonzalez ◽  
Paul Stegall ◽  
Harvey Edwards ◽  
Leia Stirling ◽  
Ho Chit Siu

The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable sensor data. An ablation analysis is performed in order to select the subset of sensors that yield the highest classification accuracy. The paper also compares principal components across trials to inform the similarity of the trials. Five subjects were instructed to perform standing, walking, running, and sprinting on a self-paced treadmill, and the data were recorded while using surface electromyography sensors (sEMGs), inertial measurement units (IMUs), and force plates. When all of the sensors were included, the SVM had over 90% classification accuracy using only the first three principal components of the data with the classes of stand, walk, and run/sprint (combined run and sprint class). It was found that sensors that were placed only on the lower leg produce higher accuracies than sensors placed on the upper leg. There was a small decrease in accuracy when the force plates are ablated, but the difference may not be operationally relevant. Using only accelerometers without sEMGs was shown to decrease the accuracy of the SVM.


2021 ◽  
Vol 11 (3) ◽  
pp. 1331
Author(s):  
Mohammad Hossein Same ◽  
Gabriel Gleeton ◽  
Gabriel Gandubert ◽  
Preslav Ivanov ◽  
Rene Jr Landry

By increasing the demand for radio frequency (RF) and access of hackers and spoofers to low price hardware and software defined radios (SDR), radio frequency interference (RFI) became a more frequent and serious problem. In order to increase the security of satellite communication (Satcom) and guarantee the quality of service (QoS) of end users, it is crucial to detect the RFI in the desired bandwidth and protect the receiver with a proper mitigation mechanism. Digital narrowband signals are so sensitive into the interference and because of their special power spectrum shape, it is hard to detect and eliminate the RFI from their bandwidth. Thus, a proper detector requires a high precision and smooth estimation of input signal power spectral density (PSD). By utilizing the presented power spectrum by the simplified Welch method, this article proposes a solid and effective algorithm that can find all necessary interference parameters in the frequency domain while targeting practical implantation for the embedded system with minimum complexity. The proposed detector can detect several multi narrowband interferences and estimate their center frequency, bandwidth, power, start, and end of each interference individually. To remove multiple interferences, a chain of several infinite impulse response (IIR) notch filters with multiplexers is proposed. To minimize damage to the original signal, the bandwidth of each notch is adjusted in a way that maximizes the received signal to noise ratio (SNR) by the receiver. Multiple carrier wave interferences (MCWI) is utilized as a jamming attack to the Digital Video Broadcasting-Satellite-Second Generation (DVB-S2) receiver and performance of a new detector and mitigation system is investigated and validated in both simulation and practical tests. Based on the obtained results, the proposed detector can detect a weak power interference down to −25 dB and track a hopping frequency interference with center frequency variation speed up to 3 kHz. Bit error ratio (BER) performance shows 3 dB improvement by utilizing new adaptive mitigation scenario compared to non-adaptive one. Finally, the protected DVB-S2 can receive the data with SNR close to the normal situation while it is under the attack of the MCWI jammer.


Author(s):  
Chenguang Li ◽  
Hongjun Yang ◽  
Long Cheng

AbstractAs a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions, they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are classified by nine classification methods, and the different features and classification methods are compared. The results show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective. Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar classification results can be achieved.


Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


Sign in / Sign up

Export Citation Format

Share Document