scholarly journals A new variation for the relativistic Euler equations

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mahmoud A. E. Abdelrahman ◽  
Hanan A. Alkhidhr

Abstract The Glimm scheme is one of the so famous techniques for getting solutions of the general initial value problem by building a convergent sequence of approximate solutions. The approximation scheme is based on the solution of the Riemann problem. In this paper, we use a new strength function in order to present a new kind of total variation of a solution. Based on this new variation, we use the Glimm scheme to prove the global existence of weak solutions for the nonlinear ultra-relativistic Euler equations for a class of large initial data that involve the interaction of nonlinear waves.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Nakao Hayashi ◽  
Chunhua Li ◽  
Pavel I. Naumkin

We consider the initial value problem for the nonlinear dissipative Schrödinger equations with a gauge invariant nonlinearityλup-1uof orderpn<p≤1+2/nfor arbitrarily large initial data, where the lower boundpnis a positive root ofn+2p2-6p-n=0forn≥2andp1=1+2forn=1.Our purpose is to extend the previous results for higher space dimensions concerningL2-time decay and to improve the lower bound ofpunder the same dissipative condition onλ∈C:Im⁡ λ<0andIm⁡ λ>p-1/2pRe λas in the previous works.


2016 ◽  
Vol 13 (02) ◽  
pp. 381-415
Author(s):  
Debora Amadori ◽  
Paolo Baiti ◽  
Andrea Corli ◽  
Edda Dal Santo

In this paper we study the flow of an inviscid fluid composed by three different phases. The model is a simple hyperbolic system of three conservation laws, in Lagrangian coordinates, where the phase interfaces are stationary. Our main result concerns the global existence of weak entropic solutions to the initial-value problem for large initial data.


Author(s):  
Ratchata Theinchai ◽  
Siriwan Chankan ◽  
Weera Yukunthorn

We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.


Sign in / Sign up

Export Citation Format

Share Document