scholarly journals Climate change scenario analysis for Baro-Akobo river basin, Southwestern Ethiopia

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Teressa Negassa Muleta

Abstract Background Several water resources projects are under planning and implementation in the Baro-Akobo basin. Currently, the planning and management of these projects is relied on historical data. So far, hardly any study has addressed water resources management and adaptation measures in the face of changing water balances due to climate change in the basin. The main bottleneck to this has been lack of future climate change scenario base data over the basin. The current study is aimed at developing future climate change scenario for the basin. To this end, Regional Climate Model (RCM) downscaled data for A1B emission scenario was employed and bias corrected at basin level using observed data. Future climate change scenario was developed using the bias corrected RCM output data with the basic objective of producing baseline data for sustainable water resources development and management in the basin. Result The projected future climate shows an increasing trend for both maximum and minimum temperatures; however, for the case of precipitation it does not manifest a systematic increasing or decreasing trend in the next century. The projected mean annual temperature increases from the baseline period by an amount of 1 °C and 3.5 °C respectively, in 2040s and 2090s. Similarly, evapotranspiration has been found to increase to an extent of 25% over the basin. The precipitation is predicted to experience a mean annual decrease of 1.8% in 2040s and an increase of 1.8% in 2090s over the basin for the A1B emission scenario. Conclusion The study resulted in a considerable future change in climatic variables (temperature, precipitation, and evapotranspiration) on the monthly and seasonal basis. These have an implication on hydrologic extremes-drought and flooding, and demands dynamic water resources management. Hence the study gives a valuable base information for water resources planning and managers, particularly for modeling reservoir inflow-climate change relations, to adapt reservoir operation rules to the real-time changing climate.

Epidemiology ◽  
2004 ◽  
Vol 15 (4) ◽  
pp. S97
Author(s):  
Jonathan Patz ◽  
Howard Frumkin ◽  
Michell Klein ◽  
Michelle Bell ◽  
Hugh Ellis ◽  
...  

2018 ◽  
Vol 79 (4) ◽  
pp. 335-343
Author(s):  
Firoz Ahmad ◽  
Md Meraj Uddin ◽  
Laxmi Goparaju

Abstract Analysing the forest fires events in climate change scenario is essential for protecting the forest from further degradation. Geospatial technology is one of the advanced tools that has enormous capacity to evaluate the number of data sets simultaneously and to analyse the hidden relationships and trends. This study has evaluated the long term forest fire events with respect to India’s state boundary, its seasonal monthly trend, all forest categories of LULC and future climate anomalies datasets over the Indian region. Furthermore, the spatial analysis revealed the trend and their relationship. The state wise evaluation of forest fire events reflects that the state of Mizoram has the highest forest fire frequency percentage (11.33%) followed by Chhattisgarh (9.39%), Orissa (9.18%), Madhya Pradesh (8.56%), Assam (8.45%), Maharashtra (7.35%), Manipur (6.94%), Andhra Pradesh (5.49%), Meghalaya (4.86%) and Telangana (4.23%) when compared to the total country’s forest fire counts. The various LULC categories which represent the forest show some notable forest fire trends. The category ‘Deciduous Broadleaf Forest’ retain the highest fire frequency equivalent to 38.1% followed by ‘Mixed Forest’ (25.6%), ‘Evergreen Broadleaf Forest’ (16.5%), ‘Deciduous Needle leaf Forest’ (11.5%), ‘Shrub land’ (5.5%), ‘Evergreen Needle leaf Forest’ (1.5%) and ‘Plantations’ (1.2%). Monthly seasonal variation of forest fire events reveal the highest forest fire frequency percentage in the month of ‘March’ (55.4%) followed by ‘April’ (28.2%), ‘February’ (8.1%), ‘May’ (6.7%), ‘June’ (0.9%) and ‘January’ (0.7%). The evaluation of future climate data for the year 2030 shows significant increase in forest fire seasonal temperature and abrupt annual rainfall pattern; therefore, future forest fires will be more intensified in large parts of India, whereas it will be more crucial for some of the states such as Orissa, Chhattisgarh, Mizoram, Assam and in the lower Sivalik range of Himalaya. The deciduous forests will further degrade in future. The highlight/results of this study have very high importance because such spatial relationship among the various datasets is analysed at the country level in view of the future climate scenario. Such analysis gives insight to the policymakers to make sustainable future plans for prioritization of the various state forests suffering from forest fire keeping in mind the future climate change scenario.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116762 ◽  
Author(s):  
Mathukumalli Srinivasa Rao ◽  
Pettem Swathi ◽  
Chitiprolu Anantha Rama Rao ◽  
K. V. Rao ◽  
B. M. K. Raju ◽  
...  

Author(s):  
Ifie-emi Francis Oseke ◽  
Geophery Kwame Anornu ◽  
Kwaku Amaning Adjei ◽  
Martin Obada Eduvie

Abstract. The strategies and actions in the management of African River Basins in a warming climate environment have been studied. Using the Gurara Reservoir Catchment in North-West Nigeria as a case study, summations were proposed using hypothetical climate scenarios considering the Global Climate Models prediction and linear trend of the data. Four (4) proposed scenarios of temperature increase (1 % and 2 %) coupled with a decrease in precipitation of (−5 % and −10 %) were combined and applied for the study area. The Water Evaluation and Planning Tool was used to model and evaluates the impact of the earth's rising temperature and declining rainfall on the hydrology and availability of water by investigating its resilience to climate change. Modelling results indicate a reduction in available water within the study area from 4.3 % to 3.5 % compared to the baseline with no climate change scenario, revealing the current water management strategy as not sustainable, uncoordinated, and resulting in overexploitation. The findings could assist in managing future water resources in the catchment by accentuating the need to put in place appropriate adaptation measures to foster resilience to climate change. Practically, it is pertinent to shape more effective policies and regulations within catchments for effective water resources management in reducing water shortage as well as achieving downstream water needs and power benefit in thefuture, while also allowing flexibility in the operation of a reservoir with the ultimate goal of adapting to climate change.


Author(s):  
Alminda Magbalot-Fernandez ◽  
Qianwen He ◽  
Frank Molkenthin

Projected changes in temperature due to global climate change may have serious impacts on hydrologic processes, water resources availability, irrigation water demand, and thereby affecting the agricultural production and productivity. Therefore, understanding the impacts of climate change on crop production and water resources is of utmost importance for developing possible adaptation strategies. The White Oak Bayou, one of the several waterways that give Houston, Texas, United States its popular nickname "The Bayou City" was selected in this case study. SWAT model is process based and can simulate the hydrological cycle, crop yield, soil erosion and nutrient transport. It is operated with an interface in ArcView GIS using raster or vector datasets including the digital elevation model (DEM), soil properties, vegetation, LULC, and meteorological observations observed which were derived from the Consortium for Geospatial Information, National Cooperative Soil Survey, National Land Cover Database 2006, NCEP Climate Forecast System Reanalysis and USGS website in 2005-2008. The climate change scenario was based on the projected increase in temperature by the IPCC by 2100. This case study showed a decrease in streamflow from observed actual scenario (2005-2008) to projected increase of 4°C temperature in future climate change scenario by 2100. The evapotranspiration increased but there was a decrease in surface runoff and percolation. Moreover, there were greater average plant biomass and more average plant yields. Hence, the nitrogen and phosphorus uptake and removed in yield increased. Thus, the total nitrogen decreased while the total phosphorus is zero indicating loss of the Phosphorus content in the soil. Yet, this case study needs to be validated and calibrated with actual data to support the projected outcome.


Sign in / Sign up

Export Citation Format

Share Document