scholarly journals Mosaic PTEN alteration in the neural crest during embryogenesis results in multiple nervous system hamartomas

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Alice Goldenberg ◽  
Florent Marguet ◽  
Vianney Gilard ◽  
Aude-Marie Cardine ◽  
Adnan Hassani ◽  
...  

AbstractThe contribution of mosaic alterations to tumors of the nervous system and to non-malignant neurological diseases has been unmasked thanks to the development of Next Generation Sequencing (NGS) technologies. We report here the case of a young patient without any remarkable familial medical history who was first referred at 7 years of age, for an autism spectrum disorder (ASD) of Asperger type, not associated with macrocephaly. The patient subsequently presented at 10 years of age with multiple nodular lesions located within the trigeminal, facial and acoustic nerve ganglia and at the L3 level. Histological examination of this latter lesion revealed a glioneuronal hamartoma, exhibiting heterogeneous PTEN immunoreactivity, astrocyte and endothelial cell nuclei expressing PTEN, but not ganglion cells. NGS performed on the hamartoma allowed the detection of a PTEN pathogenic variant in 30% of the reads. The presence of this variant in the DNA extracted from blood and buccal swabs in 3.5 and 11% of the NGS reads, respectively, confirmed the mosaic state of the PTEN variant. The anatomical distribution of the lesions suggests that the mutational event affecting PTEN occurred in neural crest progenitors, thus explaining the absence of macrocephaly. This report shows that mosaic alteration of PTEN may result in multiple central and peripheral nervous system hamartomas and that the presence of such alteration should be considered in patients with multiple nervous system masses, even in the absence of cardinal features of PTEN hamartoma tumor syndrome, especially macrocephaly.

Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 216 ◽  
Author(s):  
Marika Cordaro ◽  
Salvatore Cuzzocrea ◽  
Rosalia Crupi

The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.


Author(s):  
Konstantin Gulyabin

Mills' syndrome is a rare neurological disorder. Its nosological nature is currently not completely determined. Nevertheless, Mills' syndrome is considered to be a rare variant of the degenerative pathology of the central nervous system – a variant of focal cortical atrophy. The true prevalence of this pathology is unknown, since this condition is more often of a syndrome type, observed in the clinical picture of a number of neurological diseases (primary lateral sclerosis, frontotemporal dementia, etc.) and is less common in isolated form.


2019 ◽  
Author(s):  
Yunlu Zhu ◽  
Samantha C. Crowley ◽  
Andrew J. Latimer ◽  
Gwendolyn M. Lewis ◽  
Rebecca Nash ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Madalina Andreea Robea ◽  
Alin Ciobica ◽  
Alexandrina-Stefania Curpan ◽  
Gabriel Plavan ◽  
Stefan Strungaru ◽  
...  

Autism spectrum disorder (ASD) is one of the most salient developmental neurological diseases and remarkable similarities have been found between humans and model animals of ASD. A common method of inducing ASD in zebrafish is by administrating valproic acid (VPA), which is an antiepileptic drug that is strongly linked with developmental defects in children. In the present study we replicated and extended the findings of VPA on social behavior in zebrafish by adding several sleep observations. Juvenile zebrafish manifested hyperactivity and an increase in ASD-like social behaviors but, interestingly, only exhibited minimal alterations in sleep. Our study confirmed that VPA can generate specific ASD symptoms, indicating that the zebrafish is an alternative model in this field of research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugene Kozlov ◽  
Yulii V. Shidlovskii ◽  
Rudolf Gilmutdinov ◽  
Paul Schedl ◽  
Mariya Zhukova

AbstractPosttranscriptional gene regulation includes mRNA transport, localization, translation, and regulation of mRNA stability. CPEB (cytoplasmic polyadenylation element binding) family proteins bind to specific sites within the 3′-untranslated region and mediate poly- and deadenylation of transcripts, activating or repressing protein synthesis. As part of ribonucleoprotein complexes, the CPEB proteins participate in mRNA transport and localization to different sub-cellular compartments. The CPEB proteins are evolutionarily conserved and have similar functions in vertebrates and invertebrates. In the nervous system, the CPEB proteins are involved in cell division, neural development, learning, and memory. Here we consider the functional features of these proteins in the nervous system of phylogenetically distant organisms: Drosophila, a well-studied model, and mammals. Disruption of the CPEB proteins functioning is associated with various pathologies, such as autism spectrum disorder and brain cancer. At the same time, CPEB gene regulation can provide for a recovery of the brain function in patients with fragile X syndrome and Huntington's disease, making the CPEB genes promising targets for gene therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Santhosh Sethuramanujam ◽  
Akihiro Matsumoto ◽  
Geoff deRosenroll ◽  
Benjamin Murphy-Baum ◽  
J Michael McIntosh ◽  
...  

AbstractIn many parts of the central nervous system, including the retina, it is unclear whether cholinergic transmission is mediated by rapid, point-to-point synaptic mechanisms, or slower, broad-scale ‘non-synaptic’ mechanisms. Here, we characterized the ultrastructural features of cholinergic connections between direction-selective starburst amacrine cells and downstream ganglion cells in an existing serial electron microscopy data set, as well as their functional properties using electrophysiology and two-photon acetylcholine (ACh) imaging. Correlative results demonstrate that a ‘tripartite’ structure facilitates a ‘multi-directed’ form of transmission, in which ACh released from a single vesicle rapidly (~1 ms) co-activates receptors expressed in multiple neurons located within ~1 µm of the release site. Cholinergic signals are direction-selective at a local, but not global scale, and facilitate the transfer of information from starburst to ganglion cell dendrites. These results suggest a distinct operational framework for cholinergic signaling that bears the hallmarks of synaptic and non-synaptic forms of transmission.


1985 ◽  
Vol 27 (3) ◽  
pp. 189-203 ◽  
Author(s):  
Jean Loup Duband ◽  
Gordon C. Tucker ◽  
Thomas J. Poole ◽  
Michel Vincent ◽  
Hirohiko Aoyama ◽  
...  

2006 ◽  
Vol 235 (5) ◽  
pp. 1413-1432 ◽  
Author(s):  
Karen K. Deal ◽  
V. Ashley Cantrell ◽  
Ronald L. Chandler ◽  
Thomas L. Saunders ◽  
Douglas P. Mortlock ◽  
...  

2021 ◽  
Author(s):  
Marzia Soligo ◽  
Fausto Maria Felsani ◽  
Tatiana Da Ros ◽  
Susanna Bosi ◽  
Elena Pellizzoni ◽  
...  

Carbon nanotubes (CNTs) are currently under active investigation for their use in several biomedical applications, especially in neurological diseases and nervous system injury due to their electrochemical properties.


Sign in / Sign up

Export Citation Format

Share Document