scholarly journals Structural heterogeneity in and around the fold-and-thrust belt of the Hidaka Collision zone, Hokkaido, Japan and its relationship to the aftershock activity of the 2018 Hokkaido Eastern Iburi Earthquake

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takaya Iwasaki ◽  
Noriko Tsumura ◽  
Tanio Ito ◽  
Kazunori Arita ◽  
Matsubara Makoto ◽  
...  

Abstract The Hokkaido Eastern Iburi Earthquake (M = 6.7) occurred on Sep. 6, 2018 in the southern part of Central Hokkaido, Japan. Since Paleogene, this region has experienced the dextral oblique transpression between the Eurasia and North American (Okhotsk) Plates and the subsequent collision between the Northeast Japan Arc and the Kuril Arc due to the oblique subduction of the Pacific Plate. This earthquake occurred beneath the foreland fold-and-thrust belt of the Hidaka Collision zone developed by the collision process, and is characterized by its deep focal depth (~ 37 km) and complicated rupture process. The reanalyses of controlled source seismic data collected in the 1998–2000 Hokkaido Transect Project revealed the detailed structure beneath the fold-and-thrust belt, and its relationship with the aftershock activity of this earthquake. Our reflection processing using the CRS/MDRS stacking method imaged for the first time the lower crust and uppermost mantle structures of the Northeast Japan Arc underthrust beneath a thick (~ 5–10 km) sedimentary package of the fold-and-thrust belt. Based on the analysis of the refraction/wide-angle reflection data, the total thickness of this Northeast Japan Arc crust is only 16–22 km. The Moho is at depths of 26–28 km in the source region of the Hokkaido Eastern Iburi Earthquake. Our hypocenter determination using a 3D structure model shows that most of the aftershocks are distributed in a depth range of 7–45 km with steep geometry facing to the east. The seismic activity is quite low within the thick sediments of the fold–thrust belt, from which we find no indication on the relationship of this event with the shallow (< 10–15 km) and rather flat active faults developed in the fold-and-thrust belt. On the other hand, a number of aftershocks are distributed below the Moho. This high activity may be caused by the cold crust delaminated from the Kuril Arc side by the arc–arc collision, which prevents the thermal circulation and cools the forearc uppermost mantle to generate an environment more favorable for brittle fracture.

2011 ◽  
Vol 182 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Stéphane Molliex ◽  
Olivier Fabbri ◽  
Vincent Bichet ◽  
Herfried Madritsch

Abstract This study presents new constraints for Plio-Quaternary (post-2.4 Ma to present-day) anticline growth along the frontal zone of the Jura fold-and-thrust belt, in the Forêt de Chaux area, located 30 km SW of Besançon. The Forêt de Chaux area consists of a N080°E-elongated depression bordered by the Doubs and Loue rivers to the north and south respectively, and filled with Sundgau-type Pliocene alluvial deposits. The upper surface of the Pliocene deposits between the Loue and Doubs rivers is marked by a N065°E-trending ridge crossing the depression in a median position. A differential uplift along this ridge, post-dating the deposition of the gravels (2.4 Ma), is suggested by several geomorphological observations such as the opposite river migration on each side of the ridge as well as variations of drainage geometry and incision intensity. Geological and geophysical subsurface data indicate that the ridge roughly coincides with the axis of an anticline hidden beneath the Pliocene deposits. The observed uplift is presumably related to a post-2.4 Ma anticline growth. The fact that the azimuth of the hidden anticline axis is parallel to the strike of deep-seated Late Paleozoic basement faults and not to the local strike of the thin-skinned Jura structures indicates that the inferred post-Pliocene deformation could possibly be an expression of a recent thick-skinned deformation of the basement of the northern Alpine foreland. The focal depth (15 km) of the February 24th, 2004, Besançon earthquake supports the hypothesis of a basement fault reactivation.


2016 ◽  
Author(s):  
Daniel Benjamin Lammie ◽  
◽  
Peter B. Sak ◽  
Nadine McQuarrie

Sign in / Sign up

Export Citation Format

Share Document