scholarly journals Mesoporous activated carbon yielded from pre-leached cassava peels

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
R. Kayiwa ◽  
H. Kasedde ◽  
M. Lubwama ◽  
J. B. Kirabira

AbstractThe search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g−1 and BET surface area of 1684 m2g−1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g−1) relative to the micropore volume (0.281 cm3g−1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm−1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.

2021 ◽  
Author(s):  
Ronald Kayiwa ◽  
Hillary Kasedde ◽  
Michael Lubwama ◽  
John Baptist Kirabira

Abstract The search for alternatives to fossil based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include; yield, surface area, pore volume and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Highly porous AC was prepared from cassava peels by pre-treating and activating them using NaOH and KOH respectively. The carbonization temperatures were between 480 and 780°C in an activation-carbonization stepwise process using KOH as the activator at a KOH: peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g− 1 and BET surface area of 1684 m2g− 1. The AC was dominantly microporous for carbonization temperatures below 780°C but a remarkable increase in mesopore volume (0.471 cm3g− 1) relative to the micropore volume (0.281 cm3g− 1) was observed at 780°C. The Fourier transform infra red (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C-H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm− 1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the melting point of potassium enabled the modified process of producing highly porous AC from cassava peel. The SEM imaging showed well-developed hexagonal pores in the resultant AC.


2019 ◽  
Vol 9 (10) ◽  
pp. 1977 ◽  
Author(s):  
Yu-Chun Chiang ◽  
Cheng-Yu Yeh ◽  
Chih-Hsien Weng

Polyacrylonitrile-based activated carbon fibers (ACFs), modified using potassium hydroxide (KOH) or tetraethylenepentamine (TEPA), were investigated for carbon dioxide (CO2) adsorption, which is one of the promising alleviation approaches for global warming. The CO2 adsorption isotherms were measured, and the values of isosteric heat of adsorption were calculated. The results showed that the KOH-modified ACFs exhibited a great deal of pore volume, and a specific surface area of 1565 m2/g was obtained. KOH activation made nitrogen atoms easily able to escape from the surface of ACFs. On the other hand, the surface area and pore volume of ACFs modified with TEPA were significantly reduced, which can be attributed to the closing or blocking of micropores by the N-groups. The CO2 adsorption on the ACF samples was via exothermic reactions and was a type of physical adsorption, where the CO2 adsorption occurred on heterogeneous surfaces. The CO2 uptakes at 1 atm and 25 °C on KOH-activated ACFs reached 2.74 mmole/g. This study observed that microporosity and surface oxygen functionalities were highly associated with the CO2 uptake, implying the existence of O-C coordination, accompanied with physical adsorption. Well cyclability of the adsorbents for CO2 adsorption was observed, with a performance decay of less than 5% over up to ten adsorption-desorption cycles.


2017 ◽  
Vol 36 (8) ◽  
pp. 805-814 ◽  
Author(s):  
Song Cheng ◽  
Shengzhou Zhang ◽  
Libo Zhang ◽  
Hongying Xia ◽  
Jinhui Peng ◽  
...  

AbstractEupatorium adenophorum, global exotic weeds, was utilized as feedstock for preparation of activated carbon (AC) via microwave-induced KOH activation. Influences of the three vital process parameters – microwave power, activation time and impregnation ratio (IR) – have been assessed on the adsorption capacity and yield of AC. The process parameters were optimized utilizing the Design Expert software and were identified to be a microwave power of 700 W, an activation time of 15 min and an IR of 4, with the resultant iodine adsorption number and yield being 2,621 mg/g and 28.25 %, respectively. The key parameters that characterize the AC such as the brunauer emmett teller (BET) surface area, total pore volume and average pore diameter were estimated to be 3,918 m2/g, 2,383 ml/g and 2.43 nm, respectively, under the optimized process conditions. The surface characteristics of AC were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and Transmission electron microscope.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 7935-7942
Author(s):  
Bing Wang ◽  
Huiyuan Chen ◽  
Yonggang Li ◽  
Hongyu Si ◽  
Haomin Wei ◽  
...  

Effects of rapid cooling following pyrolysis were studied relative to the properties of activated carbon using different biomass as the raw materials. Coconut shell-based activated carbon (CSAC), bamboo-based activated carbon (BAC), and straw-based activated carbon (WSAC) were activated via high temperature and subsequently rapidly cooled to below minus 150 °C. The results showed that rapid cooling effectively increased the specific surface area, pore volume, and yield of activated carbons. Compared to natural cooling, rapid cooling increased the specific surface area of CSAC from 1076 m2/g to 1484 m2/g, increased the pore volume from 1.46 mL/g to 1.57 mL/g, decreased the average pore size from 2.25 nm to 2.13 nm, and increased the yield from 27.1% to 31.5%. The variation of the properties of activated carbon after rapid cooling using different raw materials and process conditions were studied using orthogonal experiments.


Carbon ◽  
2020 ◽  
Vol 170 ◽  
pp. 567-579
Author(s):  
Zongbo Zhang ◽  
Chen Jiang ◽  
Dawei Li ◽  
Yuqi Lei ◽  
Huimin Yao ◽  
...  

2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


Author(s):  
Darmawati Darmawati ◽  
Syarifah Maulidar ◽  
Khairun Nisa

The study aims to find out about the possibility of utilizing cassava peel waste as raw material for making activated carbon to reduce levels of Manganese in water. This study also wants to see the effect of variations in the concentration of activated carbon from cassava peels on decreasing levels of Manganese in water. This research was conducted at the Laboratory of the Akademi Analis Kesehatan Pemerintah Aceh and at the UPTD Laboratorium Kesehatan Banda Aceh on 3-11 March 2016. Manganese was analysed using the persulfate method while the Manganese was examinated by the spectrophotometric method. The sample used is an artificial sample by adding MnSO4 to water. The variation of activated carbon concentration added is 2 gr, 3 gr, and 4 gr. The results are that with the addition of 2 grams of activated carbon the percentage of Manganese reduction was 70.37%, the addition of 3 grams of activated carbon decreased Manganese concentration by 86.59%, while the addition of 4 grams of activated carbon reduced the percentage of Manganese to 92.33%. It can be concluded that the higher the concentration of activated carbon added, the higher the decrease in levels of Manganese in the water.


Author(s):  
Siti Shawalliah Idris ◽  
Muhammad Nasrul Bojy ◽  
Zakiuddin Januri

Conversion of waste to wealth has been one of the ways to reduce the volume of industrial waste to disposal site, hence reducing the impact to the environment. In this work, paint sludge from an automotive industry (APS) was converted into activated carbon through chemical activation (potassium hydroxide (KOH)) using microwave pyrolysis technique. The effect of power and radiation time on the produced activated carbon were investigated and characterised (carbon content, surface area, and pore volume) to identify the possibility of application as a supercapacitor. Potassium hydroxide activation of the APS char via microwave pyrolysis has shown that power level and radiation time has influenced the yield of the APS activated carbon. A longer radiation time and higher power supply has produced activated carbon having higher carbon contents, lower impurities, higher surface area and higher pore volume. Thus, the APS activated carbon obtained via microwave pyrolysis at power supply 1000 W and 45 minutes radiation time had produced the highest surface area and total pore volume of 434.3 m2/g and 0.2901 cm3/g, respectively. However, the produced activated carbon is not suitable for the supercapacitor application as the minimum surface area requirement must be more than 1000 m2/g. The pore size of the activated APS char produced in this study was in the range of mesopores size which was also considered very poor for supercapacitor application. The outcome of this research has shown that the produced activated carbon could otherwise be used for other application than a supercapacitor.


1996 ◽  
Vol 454 ◽  
Author(s):  
Weiming Lu ◽  
D. D. L. Chung

ABSTRACTActivated carbon filaments of diameter ∼0.1 μm, main pore size (BJH) 55 Å, specific surface area 1310 m2/g and yield 36.2% were obtained by activating carbon filaments of diameter ∼ 0.1 urn in C02 + N2 (1:1) at 970°C for 80 min. Prior to this activation, the filaments were surface oxidized by exposure to ozone.


Sign in / Sign up

Export Citation Format

Share Document