scholarly journals Numerical investigation of heat transfer in a garment convective cooling system

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yijie Zhang ◽  
Juhong Jia ◽  
Ziyi Guo

AbstractA personal microclimate management system is designed to maintain thermal comfort which allows people to overcome a harsh environment. It consists of several micro-fans placed in the garment side seam to provide cooling air. The computational fluid dynamics method was used to simulate the three-dimensional model and analysis the influence of fan’s number and air gap distance. The obtained results depict that the introduced cool airflow will find its way along paths with flow resistance minimized and exhaust through several separated exit. The body heat flux is taken away at the same time. The convection effect is enhanced by the increase in the fans’ numbers, but the fans’ cooling effect varies a lot because of various air gap distances. When the air gap is small enough, the cooling air impact the body surface directly and causes fierce heat loss. While the air gap distance is large enough, the heat transfer along the skin surface could be enhanced by the eddy flow which is existed in the air gap between body and garment. These phenomena can maintain the body’s thermal comfort in a suitable range.

Author(s):  
Zhiqi Zhao ◽  
Lei Luo ◽  
Shouzuo Li ◽  
Dandan Qiu ◽  
Songtao Wang ◽  
...  

In this paper, the internal cooling structure of a second-stage rotor blade is designed by using a multi-level highly efficient design platform. The design process is divided into schematic design and detailed design in sequence. The calculations of pipe-network and heat conduction are presented to preliminary evaluate the cooling structures derived from the schematic design stage. The flow field and heat transfer characteristics of the revised cooling structures are analyzed in the detailed design by using the three-dimensional conjugated heat transfer calculation method. Topological structure, mass flow rate, pressure distribution, heat transfer coefficient and temperature distribution of the cooling channels are presented. It is found that the schematic design results based on one-dimensional to three-dimensional solution method are in good agreement with the detailed design results. Meanwile, the introduction of the schematic design is helpful to shorten the cooling design cycle and reduce the dependence of the design experience. In this work, a five-pass serpentine passage with single cooling air inlet in the cooling system may lead to low flow rate at the trailing edge, which is prone to cause hot gas back-flow and local high heat load. The cooling system with a right-angle channel and a three-pass serpentine channel helps to distribute the flow reasonably and reduce the thermal gradient on the blade surface. The optimal cooling structure meet the requirements well. Compared with the uncooled blade, the average temperature of the blade decrease over 530 K with limited cooling air.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yijie Zhang ◽  
Juhong Jia

AbstractThis article aimed to study the characteristics and mechanisms of 3D heat transfer through clothing involving the air gap. A three-dimensional finite volume method is used to obtain the coupled conductive, convective, and radiative heat transfer in a body-air-cloth microclimate system. The flow contours and characteristics of temperature, heat flux, and velocity have been obtained. The reason for the high flux and temperature regions was analyzed. Computational results show that the coupled effect of the air gap and the airflow between the skin and garment strongly influences the temperature and heat flux distribution. There are several high-temperature regions on the clothing and high heat flux regions on the body skin because the conductive heat flux can cross through the narrow air gap and reach the cloth surface easily. The high-speed cooling airflow brings about high forced convective heat flux, which will result in the temperature increase on the upper cloth surface. The radiative heat flux has a strong correlation with the temperature gradient between the body and clothing. But its proportion in the total heat flux is relatively small.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


2019 ◽  
Vol 62 (4) ◽  
pp. 263-269
Author(s):  
I. A. Pribytkov ◽  
S. I. Kondrashenko

In this paper, the development features of a single free jet of hightemperature nitrogen interacting with a flat surface were studied. Calculation of the heat exchange process during heating by the attacking jets is very difficult to implement analytically due to complexity of the gas-dynamic processes occurring both in a single jet and in a system of jets interacting with the metal. The computational difficulties are aggravated by the fact that when interacting with the surface the jet as such disappears. The flat (fan) flow interacts with the surface: form, aerodynamic properties and thermal state of the flow strongly differ from those of the original jet. The studies were conducted on the basis of numerical simulation in the FloEFD software and computing complex for multiphysical simulation based on solution of the equations of gas dynamics and heat transfer. The solved system of equations consisted of Navier-Stokes equations, equations of energy and continuity and was supplemented by k – ε turbulence model. A three-dimensional model was developed for simulation, the necessary properties, initial and boundary conditions were specified. In the study of aerodynamics of a single high-temperature jet interacting with the surface, the main defining values were: nitrogen flow rate from the nozzle U0 , nitrogen temperature T, internal diameter of the nozzle d0 , distance from the nozzle section to the surface h, distance from the critical point (point of intersection of the jet axis with the surface) along the flow radius r. Data on the gas velocity decrease as the jet develops due to the loss of initial energy to engage the motionless surrounding gas in motion, is presented. The studies have shown that increase in the initial velocity of gas outflow brings the area of higher velocities closer to the surface both in the jet itself and in the fan jet. This factor contributes to heat transfer intensification. In addition, high speeds increase the total thickness of the fan flow and reduce the thickness of hydrodynamic boundary layer, which increases with distance from the critical point.


Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Thomas Povey

Modern lean burn combustors now employ aggressive swirlers to enhance fuel-air mixing and improve flame stability. The flow at combustor exit can therefore have high residual swirl. A good deal of research concerning the flow within the combustor is available in open literature. The impact of swirl on the aerodynamic and heat transfer characteristics of an HP turbine stage is not well understood, however. A combustor swirl simulator has been designed and commissioned in the Oxford Turbine Research Facility (OTRF), previously located at QinetiQ, Farnborough UK. The swirl simulator is capable of generating an engine-representative combustor exit swirl pattern. At the turbine inlet plane, yaw and pitch angles of over ±40 deg have been simulated. The turbine research facility used for the study is an engine scale, short duration, rotating transonic turbine, in which the nondimensional parameters for aerodynamics and heat transfer are matched to engine conditions. The research turbine was the unshrouded MT1 design. By design, the center of the vortex from the swirl simulator can be clocked to any circumferential position with respect to HP vane, and the vortex-to-vane count ratio is 1:2. For the current investigation, the clocking position was such that the vortex center was aligned with the vane leading edge (every second vane). Both the aligned vane and the adjacent vane were characterized. This paper presents measurements of HP vane surface and end wall heat transfer for the two vane positions. The results are compared with measurements conducted without swirl. The vane surface pressure distributions are also presented. The experimental measurements are compared with full-stage three-dimensional unsteady numerical predictions obtained using the Rolls Royce in-house code Hydra. The aerodynamic and heat transfer characterization presented in this paper is the first of its kind, and it is hoped to give some insight into the significant changes in the vane flow and heat transfer that occur in the current generation of low NOx combustors. The findings not only have implications for the vane aerodynamic design, but also for the cooling system design.


2011 ◽  
Vol 693 ◽  
pp. 235-244 ◽  
Author(s):  
John F. Grandfield ◽  
Sébastien Dablement ◽  
Hallvard Gustav Fjær ◽  
Dag Mortensen ◽  
Michael Lee ◽  
...  

Wire rod is produced by hot-rolling a bar of metal coming from a wheel/belt continuous casting process. This kind of process, e.g. Properzi, is an elaborate process in which the molten metal is poured in a cooled rotating mould formed by the groove of a wheel and closed by a belt. In order to better understand the heat transfer phenomenon and solidified bar characteristics, depending on process parameters a three dimensional thermo-mechanical model has been developed. The model, based on the finite-element method, calculates the heat transfer coefficient of the air gap at the metal-mould interface as a function of the size of the gap determined by the bar contraction and wheel and belt thermal deformations. The air gap formation due to metal shrinkage and mould deformation is the main factor which determines the heat extraction. Wheel temperature measurements with thermocouple and belt temperature measurements with an infrared system were carried out to verify model results. Attempts were also made to measure a liquid pool profile using doping with copper rich alloy. The model shows the effect of the casting temperature and the rotation speed on the air gap formation and resulting temperature and stress fields. The model can be applied to issues such as maximising wheel and belt life and minimising solidification defects.


Author(s):  
Dieter Bohn ◽  
Tom Heuer ◽  
Karsten Kusterer

In this paper a three-dimensional conjugate calculation has been performed for a passenger car turbo charger. The scope of this work is to investigate the heat fluxes in the radial compressor which can be strongly influenced by the hot turbine. As a result of this, the compressor efficiency may deteriorate. Consequently, the heat fluxes have to be taken into account for the determination of the efficiency. To overcome this problem a complex three-dimensional model has been developed. It contains the compressor, the oil cooled center housing, and the turbine. 12 operating points have been numerically simulated composed of three different turbine inlet temperatures and four different mass flows. The boundary conditions for the flow and for the outer casing were derived from experimental test data (part II of the paper). Resulting from these conjugate calculations various one-dimensional calculation specifications have been developed. They describe the heat transfer phenomena inside the compressor with the help of a Nusselt number which is a function of an artificial Reynolds number and the turbine inlet temperature.


Sign in / Sign up

Export Citation Format

Share Document