scholarly journals Cytokinin-microbiome interactions regulate developmental functions

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Rupali Gupta ◽  
Dorin Elkabetz ◽  
Meirav Leibman-Markus ◽  
Elie Jami ◽  
Maya Bar

Abstract Background The interaction of plants with the complex microbial networks that inhabit them is important for plant health. While the reliance of plants on their microbial inhabitants for defense against invading pathogens is well documented, the acquisition of data concerning the relationships between plant developmental stage or aging, and microbiome assembly, is still underway. The plant hormone cytokinin (CK) regulates various plant growth and developmental processes. Here, examining the relationships between plant development and microbiome assembly, we observed developmental-age dependent changes in the phyllopshere microbiome. We show that age-related shifts in microbiome content vary based on content of, or sensitivity to, CK. Results We found a developmental age associated decline in microbial richness and diversity, accompanied by a decline in the presence of growth promoting and resistance inducing Bacilli in the phyllosphere. This decline was absent from CK-rich or CK-hypersensitive genotypes. Bacillus isolates we obtained from CK rich genotypes were found to alter the expression of developmental genes to support morphogenesis and alter the leaf developmental program when applied to seedlings, and enhance yield and agricultural productivity when applied to mature plants. Conclusions Our results support the notion that CK supports developmental functions in part via the bacterial community.

2021 ◽  
Author(s):  
Rupali Gupta ◽  
Dorin Elkabetz ◽  
Meirav Leibman-Markus ◽  
Elie Jami ◽  
Maya Bar

The interaction of plants with the complex microbial networks that inhabit them is important for plant health. While the reliance of plants on their microbial inhabitants for defense against invading pathogens is well documented, the acquisition of data concerning the relationships between plant developmental stage or aging, and microbiome assembly, is still underway. In this work, we observed developmental-age dependent changes in the phyllopshere microbiome of tomato. The plant hormone cytokinin (CK) regulates various plant growth and developmental processes. Here, we show that age-related shifts in microbiome content vary based on content of, or sensitivity to, CK. We observed a developmental age associated decline in microbial richness and diversity, accompanied by a decline in the presence of growth promoting and resistance inducing bacilli in the phyllosphere. This decline was absent from CK-rich or CK-hypersensitive genotypes. Bacillus isolates we obtained from CK rich genotypes were found to re-program the transcriptome to support morphogenesis and alter the leaf developmental program when applied to seedlings, and enhance yield and agricultural productivity when applied to mature plants. Our results support the notion that CK-dependent effects on microbiome content support developmental functions, suggesting that these are mediated by CK in part via the bacterial community.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Raúl Donoso ◽  
Pablo Leiva-Novoa ◽  
Ana Zúñiga ◽  
Tania Timmermann ◽  
Gonzalo Recabarren-Gajardo ◽  
...  

ABSTRACT Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans. These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.


2022 ◽  
Vol 170 ◽  
pp. 104297
Author(s):  
Jessica Aparecida Ferrarezi ◽  
Paula de Almeida Carvalho-Estrada ◽  
Bruna Durante Batista ◽  
Rafael Martins Aniceto ◽  
Bruno Augusto Prohmann Tschoeke ◽  
...  

2021 ◽  
Author(s):  
Jia-Qi Liu ◽  
Chun-Mei Zhang ◽  
Yuan Gong ◽  
Ming-Jie Xu ◽  
Ke Xing ◽  
...  

Abstract Purpose Arctium lappa L. is one of the medicinal and food homologous plants in China, which is rich in nutrients and medicinal ingredients. The use of plant growth promoting (PGP) endophytic bacteria is a useful alternative in agricultural production to reduce the use of chemical fertilizers. The aim of this study was to analysis the diversity of endophytic bacteria in different cultivars of A. lappa L. collected from two different geographical locations in China and evaluate PGP traits of the isolates and their potential PGP ability in greenhouse condition. Methods Endophytic bacterial community was investigated by culture-dependent and culture-independent methods. Isolates were screened and investigated for multiple PGP traits, and representative strains were inoculated host seedlings to evaluate the growth promoting effect. Results A total of 348 endophytic bacteria were obtained and they distributed into four phyla, 30 genera and 73 different species. In addition, high throughput sequencing revealed more abundant bacterial community, including 17 bacterial phyla, and 207 different known genera. A high proportion of PGP traits were detected, including production of indole acetic acid, siderophore, ammonia and phosphate solubilization. Four representative strains with multiple PGP traits of the most prevalent genera were further selected for host inoculation and growth promoting evaluation, and they significantly increase seedlings length, root length and fresh weight. Conclusion This study demonstrated that A. lappa L. harbors abundant endophytic bacteria, and plant genotype and geographical origin affect their composition. Moreover, some endophytic bacteria showed good potential for the development of microbial fertilizer in the future.


2009 ◽  
Vol 47 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Juliana Mendes Monteiro ◽  
Renata Estebanez Vollú ◽  
Marcia Reed Rodrigues Coelho ◽  
Celuta Sales Alviano ◽  
Arie Fitzgerald Blank ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 551 ◽  
Author(s):  
HyungWoo Jo ◽  
Setu Bazie Tagele ◽  
Huy Quang Pham ◽  
Min-Chul Kim ◽  
Seung-Dae Choi ◽  
...  

Many Bacillus species are among the plant growth-promoting rhizobacteria (PGPR) that promote the growth of many different plant species. This study aimed to investigate the effects of Bacillus thuringiensis KNU-07 on the growth of pepper plants and the soil microbiota. We also designed primers specific for the strain KNU-07 to monitor the population in pepper-cultivated soil. Accordingly, a strain-specific primer pair was designed using a database constructed from 16,160 complete bacterial genomes. We employed quantitative PCR (qPCR) to track the abundance of the strain KNU-07 introduced into pepper-cultivated soil using the strain-specific primers. Our study revealed that the strain was found to possess plant growth-promoting (PGP) activities, and it promoted the growth of pepper plants. The soil bacterial community structure due to the application of the PGPR strain was significantly changed after six weeks post-inoculation. In addition, based on qPCR analysis, the population of the introduced strain declined over time. In this study, application of a PGPR strain increased the growth of pepper plants and changed the soil bacterial community structure. The successful results of monitoring of a bacterial strain’s population using a single strain-specific primer pair can provide important information about the quantification of bio-inoculants under non-sterile soil conditions.


Author(s):  
E. C. Chinakwe ◽  
N. U. Nwogwugwu ◽  
V. I. Ibekwe ◽  
P. O. Chinakwe ◽  
E. O. Egbadon ◽  
...  

Aim: The study identified and evaluated bacteria exhibiting multiple plant growth traits in the Rhizosphere of Yellow Bell Pepper (Capsicum chinense).                                                              Study Design: Seeds of Capsicum chinense were planted in a soil and allowed to grow. After five eeks of planting, soil samples from the rhizosphere were collected and the bacterial community present in the rhizosphere soil of Capsicum chinense was studied. The isolated organisms were assessed for their ability to produce plant growth promoting traits. Place and Duration of Study: This study was carried out at an agricultural research farmland in the Federal University of Technology, Owerri, Nigeria. Methodology: Seeds of Capiscum chinense were planted in the soil samples in a greenhouse. Rhizosphere soil was collected for analysis to identify the bacterial composition of the rhizosphere soil.                                                                                                                                               Results: In this study the presence of Bacillus cereus, Staphylococcus aureus, Corynebacterium sp, Enterococcus feacalis and Bacillus polymyxa were evident in the rhizosphere samples collected. All isolates showed multiple plant growth promoting traits except Staphylococcus aureushich was positive for hydrogen cyanide production only. Conclusion: The results from this study showed that the bacterial community present in the soil can be used to effect significant vegetative crop yield and agricultural production. The isolated rhizobacteria can be formulated as bio-fertilizers or bioinnoculants, etc.


Sign in / Sign up

Export Citation Format

Share Document