scholarly journals Solubility, pH change, and calcium ion release of low solubility endodontic mineral trioxide aggregate

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Manar Galal ◽  
Dalia Y. Zaki ◽  
Mohamed I. Rabie ◽  
Samia M. El-Shereif ◽  
Tamer M. Hamdy
2013 ◽  
Vol 39 (12) ◽  
pp. 1603-1606 ◽  
Author(s):  
Giane da Silva Linhares ◽  
Maximiliano Sérgio Cenci ◽  
César Blaas Knabach ◽  
Camila Mizette Oliz ◽  
Mariana Antunes Vieira ◽  
...  

2006 ◽  
Vol 32 (12) ◽  
pp. 1194-1197 ◽  
Author(s):  
E ANTUNESBORTOLUZZI ◽  
N JUAREZBROON ◽  
M ANTONIOHUNGARODUARTE ◽  
A DEOLIVEIRADEMARCHI ◽  
C MONTEIROBRAMANTE

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Toshiaki Baba ◽  
Yasuhisa Tsujimoto

The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p<0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC.


2013 ◽  
Vol 47 (2) ◽  
pp. 120-126 ◽  
Author(s):  
B. C. Cavenago ◽  
T. C. Pereira ◽  
M. A. H. Duarte ◽  
R. Ordinola-Zapata ◽  
M. A. Marciano ◽  
...  

2009 ◽  
Vol 35 (10) ◽  
pp. 1418-1421 ◽  
Author(s):  
Mário Tanomaru-Filho ◽  
Frederico Bordini Chaves Faleiros ◽  
Juliana Nogueira Saçaki ◽  
Marco Antonio Hungaro Duarte ◽  
Juliane Maria Guerreiro-Tanomaru

2011 ◽  
Vol 37 (6) ◽  
pp. 844-846 ◽  
Author(s):  
Santiago Massi ◽  
Mário Tanomaru-Filho ◽  
Guilherme Ferreira Silva ◽  
Marco Antonio Hungaro Duarte ◽  
Larissa Tercilia Grizzo ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1693
Author(s):  
Tae-Yun Kang ◽  
Ji-Won Choi ◽  
Kyoung-Jin Seo ◽  
Kwang-Mahn Kim ◽  
Jae-Sung Kwon

Commercial mineral trioxide aggregate (MTA) materials such as Endocem MTA (EC), Dia-Root Bio MTA (DR), RetroMTA (RM), and ProRoot MTA (PR) are increasingly used as root-end filling materials. The aim of this study was to assess and compare the physicochemical and mechanical properties and cytotoxicity of these MTAs. The film thicknesses of EC and DR were considerably less than that of PR; however, RM’s film thickness was greater than that of PR. In addition, the setting times of EC, DR, and RM were shorter than that of PR (p < 0.05). The solubility was not significantly different among all groups. The three relatively new MTA groups (EC, DR, and RM) exhibited a significant difference in pH variation and calcium ion release relative to the PR group (p < 0.05). The radiopacity of the three new MTAs was considerably less than that of PR. The mechanical strength of RM was not significantly different from that of PR (p > 0.05); however, the EC and DR groups were not as strong as PR (p < 0.05). All MTA groups revealed cytocompatibility. In conclusion, the results of this study confirmed that EC, RM, DR, and PR exhibit clinically acceptable physicochemical and mechanical properties and cell cytotoxicity.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 340
Author(s):  
Sivaprakash Rajasekharan ◽  
Chris Vercruysse ◽  
Luc Martens ◽  
Ronald Verbeeck

The authors wish to make the following correction to the paper [...]


Sign in / Sign up

Export Citation Format

Share Document