scholarly journals Production, characterization, and antitumor efficiency of l-glutaminase from halophilic bacteria

2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Eman Zakaria Gomaa

Abstract Background Halophiles are an excellent source of enzymes that are not only salt stable, but also can withstand and carry out reaction efficiently under extreme conditions. l-glutaminase has attracted much attention with respect to proposed applications in several fields such as pharmaceuticals and food industries. The aim of the present study was to investigate the anticancer activity of l-glutaminase produced by halophilic bacteria. Various halophilic bacterial strains were screened for extracellular l-glutaminase production. An attempt was made to study the optimization, purification, and characterization of l-glutaminase from Bacillus sp. DV2-37. The antitumor activity of the produced enzyme was also investigated. Results The potentiality of 15 halophilic bacterial strains isolated from the marine environment that produced extracellular l-glutaminase was investigated. Bacillus sp. DV2-37 was selected as the most potent strain and optimized for enzyme production. The optimization of fermentation process revealed that the highest enzyme activity (47.12 U/ml) was observed in a medium supplemented with 1% (w/v) glucose as a carbon source, 1% (w/v) peptone as a nitrogen source, 5% (w/v) NaCl, the initial pH was 7.0, at 37 °C, using 20% (v/v) inoculum size after 96 h of incubation. The produced crude enzyme was partially purified by ammonium sulfate precipitation and dialysis. Of the various parameters tested, pH 7, 40 °C, and 5% NaCl were found to be the best for l-glutaminase activity. The enzyme also exhibited high salt and temperature stability. The antitumor effect against human breast (MCF-7), hepatocellular (HepG-2), and colon (HCT-116) carcinoma cell lines revealed that l-glutaminase produced by Bacillus sp. DV2-37 showed potent cytotoxic activity of all the tested cell lines in a dose-dependent manner with an IC50 value of 3.5, 3.4, and 3.8 µg/ml, respectively. Conclusions The present study proved that l-glutaminase produced by marine bacteria holds proper features and it has a high potential to be useful for many therapeutic applications.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 707
Author(s):  
Mohd Shahnawaz Khan ◽  
Alya Alomari ◽  
Shams Tabrez ◽  
Iftekhar Hassan ◽  
Rizwan Wahab ◽  
...  

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150–250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.


2018 ◽  
Vol 12 (4) ◽  
pp. 41-45
Author(s):  
Zahra Yahyavi ◽  
◽  
Mohammad Reza Fazeli ◽  
Mani Mirfeizi ◽  
Shima Aliebrahimi ◽  
...  

Background: Lactobacillus and Bifidobacterium species are among the probiotics discussed due to their anti-cancer effects in the treatment of colorectal and breast cancers in recent studies. The aim of this study was to investigate the anticancer effect of Familact, a commercial probiotic capsule containing seven bacterial strains (L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B. longum and Streptococcus thermophilus). Methods: Various cancer cell lines including Caco-2, HT-29, T47D and normal cell line L929 were treated with different concentrations of Familact. Using MTT assay, the cytotoxicity effect was investigated for each cell line and then flow cytometry analysis of apoptosis was evaluated. Results: Familact demonstrated inhibitory effects on the proliferation of all tested cancer cell lines in a dose-dependent manner. Although Familact augmented apoptotic cell death in HT-29 human cancer cells, it was less effective in the case of Caco-2 and T47D cells. Moreover, exposure to Familact showed moderate cytotoxicity towards L929 mouse fibroblast cells. Conclusion: Familact could be considered as a complementary therapy in the treatment of cancers.


2021 ◽  
Author(s):  
Atika Sajid ◽  
Saira Yahya

Abstract Background: Contamination of natural niches with pharmaceutical residues has emerged out as a serious concern. Disposal of untreated effluents from the pharmaceutical, hospital, and domestic settings has been identified as a significant source of such a massive spread of antibiotics. The unnecessary persistence of pharmaceutical residues including antibiotics has been related to the increased risk of resistance selection among pathogenic and non-pathogenic microorganisms. To date, several methods have been devised to eliminate such pollutants from wastewater, but their implication on larger scales is not feasible due to complexities and high costs of the processes, especially in developing and underdeveloped countries. This study aimed to isolate and characterize bacterial strains from domestic and pharmaceutical effluents having biotransformation potential towards most persistent antibiotics. Results: Antibiotic resistance screening and MIC determination experiments indicated highest resistivity of three bacterial isolates against two antibiotics Erythromycin and Sulfamethoxazole-trimethoprim, evincing extensive usage of these antibiotics in our healthcare settings. These isolates were identified as Comamonas jiangduensis, Aeromonas caviae and Aeromonas hydrophila by 16S rDNA sequencing. Growth conditions including incubation temperature, initial pH and inoculum size were optimized for these strains. Successful biotransformation of Erythromycin and Sulfamethoxazole-trimethoprim was achieved within 92 h under optimum growth conditions. Conclusions: Aeromonas and Comononas species were found to be potent degraders of antibiotics tested, presenting these strains as potential candidates to be utilized in the remediation processes.


2021 ◽  
Vol 43 ◽  
pp. e57275
Author(s):  
Salomão Rocha Martim ◽  
Larissa Svetlana Cavalcante Silva ◽  
Mircella Marialva Alecrim ◽  
Lorisa Simas Teixeira ◽  
Maria Francisca Simas Teixeira

Pleurotus albidus, a naturally growing species in the Amazon region, has been considered a promising source of milk-clotting proteases. The production of such enzymes using lignocellulosic residues is a sustainable alternative to replace mammalian rennet. The application of P. albidus milk-clotting proteases in cheese making has not yet been reported in the scientific literature. The aim of this study was to characterize the milk-clotting proteases of P. albidus and use these enzymes in the production of Minas frescal cheese. For the production of coagulating proteases, the mushroom was grown in açaí seeds supplemented with rice bran (10%, w/w). The parameters affecting the production of coagulant, such as inoculum size, fermentation time, initial pH of cultivation medium and age of the inoculum were evaluated. The coagulant extract obtained under optimal production conditions was evaluated for optimal pH and temperature, pH and temperature stability, effect of ions and inhibitors. Significant production of coagulating proteases was obtained under the following conditions: inoculum size (2.5%), fermentation time (10 days), initial pH of the cultivation medium (6), and inoculum age (10 days). The coagulant exhibited significant catalytic activity in pH 5.0 at 55°C, with stability at 45°C and was completely inhibited by iodoacetic acid. The milk-clotting proteases of P. albidus were efficient for making Minas frescal cheese that presented 55.0% of moisture, 20.0% of lipids and 17.20% of protein. Pleurotus albidus is a potential source of milk-clotting proteases that can be applied in dairy industry for production of fresh Minas frescal cheese.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rohina Bashir ◽  
Ovais Zargar ◽  
Qazi Parvaiz ◽  
Rabia Hamid

Background: Cancer is one of the major problems at present, to which vast research is being dedicated to find effective remedy. Medicinal plants are endowed with numerous molecules that could be effective in multiple diseases including cancer. Thymus linearis, being rich in phenols, terpenoid, and flavonoids have potential to provide anti-cancer entities. Methods: The extracts of Thymus linearis were investigated for in vitro anticancer activity using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay on a panel of cancer cell lines. The cellular and nuclear morphology was studied using microscopic techniques. Agarose gel electrophoresis was used for DNA fragmentation analysis. Protein expression was determined by western-blotting. LC-MS was used for phytochemical identification. Results: Among all the extracts, Thymus linearis methanolic (TLM) extract was found to exhibit antiproliferative activity on cell lines to varied degrees. TLM was found to be most potent against HCT-116 with an IC50 of 158μg/ml after 48hrs treatment, while being nontoxic to HEK-293 and FR-2 cells under similar concentrations. TLM decreased clonogenic potential of HCT-116 cells. It induced cell shrinkage, membrane blebbing and nuclear fragmentation characteristic of apoptotic in a dose dependent manner in HCT-116 cells. Prominent internucleosomal DNA cleavage was observed in HCT-116 cells after 48hrs TLM treatment. Western blot analysis revealed the up regulation of expression of Bax, caspases 9 and caspases 3 and downregulation of Bcl-2 proteins. The LC-MS data revealed the presence of Salvianolic acid H, Synparvolide C, Thymuside A and Jasmonic acid; 12-Hydroxy, O-β-D-glucopyranoside and polyphenolic flavonoids to which antiproliferative activity can be attributed. Conclusion: The results suggest that Thymus linearis methanolic extract could be valuable source of anti-cancer agents.


2020 ◽  
Vol 13 (6) ◽  
pp. 115 ◽  
Author(s):  
Waseem El-Huneidi ◽  
Naglaa G. Shehab ◽  
Khuloud Bajbouj ◽  
Arya Vinod ◽  
Ahmed El-Serafi ◽  
...  

Micromeria fruticosa (L.) Druce subsp. serpyllifolia (Lamiaceae) has been used widely in folk medicine to alleviate various ailments such as abdominal pains, diarrhea, colds, eye infections, heart disorders and wounds. A few reports have confirmed different therapeutic potentialities of its extracts, including the anti-inflammatory, gastroprotective, analgesic, antiobesity and antidiabetic activities. This study aimed to investigate the mechanistic pathway of the antiproliferative activity of the ethanolic extract of M. fruticosa on two different cancer cell lines, namely human breast (mammary carcinoma F7 (MCF-7)) and human colorectal (human colon tumor cells (HCT-116)) cell lines. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, Annexin V-FITC/PI, caspases 8/9 and cell cycle analyses, qRT-PCR and Western blot were used to assess the effect of M. fruticosa on cytotoxicity, apoptosis, cell cycle, cell cycle-related genes and protein expression profiles in MCF-7 and HCT-116. The extract inhibits cell proliferation in a time- and dose-dependent manner. The half-maximal inhibitory concentration (IC50) for both cell lines was found to be 100 μg/mL. Apoptosis induction was confirmed by Annexin V-FITC/PI, that was related to caspases 8 and 9 activities induction. Furthermore, the cell cycle analysis revealed arrest at G2/M phase. The underlying mechanism involved in the G2/M arrest was found to be associated with the downregulation of CDK1, cyclin B1 and survivin that was confirmed by qRT-PCR and Western blotting.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988644
Author(s):  
Meng-Fei Lau ◽  
Kek-Heng Chua ◽  
Vikineswary Sabaratnam ◽  
Umah Rani Kuppusamy

Colorectal cancer is one of the most prevalent noncommunicable diseases worldwide. 5-Fluorouracil is the mainstay of chemotherapy for colorectal cancer. Previously, we have demonstrated that high glucose diminishes the cytotoxicity of 5-fluorouracil by promoting cell cycle progression. The synergistic impact of rosiglitazone on 5-fluorouracil-induced apoptosis was further investigated in this study. Besides control cell lines (CCD-18Co), two human colonic carcinoma cell lines (HCT 116 and HT 29) were exposed to different treatments containing 5-fluorouracil, rosiglitazone or 5-fluorouracil/rosiglitazone combination under normal glucose (5.5 mM) and high-glucose (25 mM) conditions. The cellular oxidative stress level was evaluated with biomarkers of nitric oxide, advanced oxidation protein products, and reduced glutathione. The cell apoptosis was assessed using flow cytometry technique. High glucose caused the production of reduced glutathione in HCT 116 and HT 29 cells. Correspondingly, high glucose suppressed the apoptotic effect of 5-fluorouracil and rosiglitazone. As compared to 5-fluorouracil alone (2 µg/mL), addition of rosiglitazone significantly enhanced the apoptosis (increment rate of 5–20%) in a dose-dependent manner at normal glucose and high glucose levels. This study indicates that high-glucose-induced reduced glutathione confers resistance to apoptosis, but it can be overcome upon treatment of 5-fluorouracil and 5-fluorouracil/rosiglitazone combination. Rosiglitazone may be a promising antidiabetic drug to reduce the chemotherapeutic dose of 5-fluorouracil for colorectal cancer complicated with hyperglycemia.


2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110553
Author(s):  
Jiale Wu ◽  
Jiafeng Wang ◽  
Yinglong Han ◽  
Yu Lin ◽  
Jing Wang ◽  
...  

A series of novel betulin derivatives containing hydrazide-hydrazone moieties were synthesized. All compounds were evaluated for their cytotoxicity against four human carcinoma cell lines (HepG2, A549, MCF-7 and HCT-116) and a normal human gastric epithelial cell line (GES-1). Among them, compound 6i was the most potent against HepG2 and MCF-7 cell lines, with IC50 values of 9.27 and 8.87 μM, respectively. The results suggest that the incorporation of a hydrazide-hydrazone side chain at the C-28 position of betulin is beneficial for compounds to display significant cytotoxicity. Compound 6i may be used as a promising skeleton for antitumor agents with improved efficacy.


Sign in / Sign up

Export Citation Format

Share Document