scholarly journals Neurological management and work-up of neurotoxicity associated with CAR T cell therapy

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Nora Möhn ◽  
Viktoria Bonda ◽  
Lea Grote-Levi ◽  
Victoria Panagiota ◽  
Tabea Fröhlich ◽  
...  

Abstract Introduction Treatment with CD19 chimeric antigen receptor (CAR) T cells is an innovative therapeutic approach for patients with relapsed/refractory diffuse large B cell lymphoma (r/rDLBCL) and B-lineage acute lymphoblastic leukemia (r/rALL). However, convincing therapeutic response rates can be accompanied by cytokine release syndrome (CRS) and severe neurotoxicity termed immune effector cell-associated neurotoxicity syndrome (ICANS). Methods Single center, prospective observational study of fifteen consecutive r/r DLBCL patients treated with Tisagenlecleucel within 1 year at Hannover Medical School. Extensive neurological work-up prior to CAR T cell infusion included clinical examination, cognitive testing (Montreal-Cognitive-Assessment), brain MRI, electroencephalogram, electroneurography, and analysis of cerebrospinal fluid. After CAR T cell infusion, patients were neurologically examined for 10 consecutive days. Afterwards, all patients were assessed at least once a week. Results ICANS occurred in 4/15 patients (27%) within 6 days (4–6 days) after CAR T cell infusion. Patients with ICANS grade 2 (n = 3) exhibited similar neurological symptoms including apraxia, expressive aphasia, disorientation, and hallucinations, while brain MRI was inconspicuous in either case. Treatment with dexamethasone rapidly resolved the clinical symptoms in all three patients. Regarding baseline parameters prior to CAR T cell treatment, patients with and without ICANS did not differ. Conclusions In our cohort, ICANS occurred in only every fourth patient and rather low grade neurotoxicity was found during daily examination. Our results demonstrate that a structured neurological baseline examination and close monitoring are helpful to detect CAR T cell related neurotoxicity already at an early stage and to potentially prevent higher grade neurotoxicity.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 587-587 ◽  
Author(s):  
Lung-Ji Chang ◽  
Lujia Dong ◽  
Yu-Chen Liu ◽  
Shih-Ting Tsao ◽  
Ya-Chen Li ◽  
...  

Abstract Background: CD19 chimeric antigen receptor (CAR)-modified T cell therapy has demonstrated clinical efficacy but often associated with severe adverse effects manifested by cytokine release syndrome (CRS). To increase safety and efficacy of CAR T therapy, a 4thgeneration CAR design has been developed and investigated in a multi-center trial in China. Patients and Methods: From July 2013 to July 2016, the 4SCAR19 phase I/II multi-center trial has enrolled 125 patients (pts) with chemo-resistant, CD19-positive, acute B cell lymphoblastic leukemia (B-ALL) eligible for CAR T cell preparation and infusion. Laboratory data and clinical records were carefully evaluated and 102 pts were qualified for statistical evaluation, including 55 children and 47 adults; 27 had received allo-HSCT prior to CAR T therapy. The median age is 9 (2 to 17) and 37 (19 to 70) for pediatric and adult pts, respectively. The median leukemia blast count in the bone marrow (BM) is 14.5%, with BM blast >50% accounting for nearly one third (33 pts). Autologous/donor T cells were apheresis collected and transduced with an apoptosis-inducible, safety-engineered lentivector CAR containing four intracellular signaling domains: CD19-scFv//CD28/CD137/CD27/CD3ζ-iCasp9 (4SCAR19). Pts received conditioning regimens of cyclophosphamide (17), cyclophosphamide/fludarabine (54), other chemotherapy (29) or none (2), followed by CAR-T cell infusion (average 1.05x106cells/kg). The quality of apheresis cells, gene transfer and T cell proliferation efficiencies, and effective CAR T infusion dose were quantitatively monitored. Statistical analysis used COX proportional hazard model involving categorical or continuous covariates, univariates, or multivariates analyses, and survival analysis was based on right-censored data and Kaplan-Meier estimation (KM curve). Results: The compiled data indicate that the quality of CAR T cells positively correlated with overall survival (OS). The median follow-up time was 7 months (range from 1~35 months). Patient (Pt) cohort 1 (<50% BM blast count, 69 pts) and cohort 2 (≥50% BM blast count, 33 pts) achieved complete response (CR) at 91.3% and 75.8%, respectively. The median OS time of cohort 1 and cohort 2 are 485 days (CI: [387, NA] days) and 317 days (CI: [135, NA]), respectively (P=0.03). The average 4SCAR19 lentivector transduction efficiency was 37.3%. While the infusion dose of CAR T cells positively correlated with OS in pediatric pts (p=0.041), it lacked significant correlation in adults (p=0.95), suggesting that other factors rather than CAR T infusion dose play an important role in CAR T therapy in adults. When pts were analyzed based on low (< 5%) versus high (> 5%) BM blasts, the CRS grade showed no significant correlation with disease burden (P = 0.45 for low burden group, and P = 0.06 for high burden group). Of note that total 73 of the 102 pts experienced 0-1 grade CRS and 8 of them had very high BM leukemia load (>80%), suggesting a very low toxicity of the 4SCAR19 T cells. In addition, of the 17 high (> 80%) BM blast pts, only 3 experienced grade 3-4 CRS. For 38 pts with BM blast ≥ 50%, most had grade 1 (30) or grade 2 (13) CRS, and only 5 pts had grade 3, and 3 pts had grade 4 CRS. For low burden pts (0-5% BM blasts), 86% (42 pts) developed low grade CRS (0 or 1), and even pts with BM blasts above 5%, 53% experienced low grade CRS (0 or 1). Further analysis of inflammatory genetic profile reveals that high CRS might correlate with high inflammatory profile, as several pts with high inflammatory gene patterns, while only had residual disease or no detectable leukemia cells (BM blasts 0-0.005%), developed grade 3-4 CRS. Conclusion: The three-year follow-up of the 4SCAR19 T cell therapy further supports that CAR T immunotherapy could benefit not only low leukemia burden pts, but also late-stage, chemo-resistant, very high-burden leukemia pts. Importantly, our study demonstrates a good safety profile of the 4SCAR19 T cells even under high disease burden. While the multicenter trial involves 22 clinical centers, the variable clinical settings do not seem to impact patient outcomes due to the highly standardized CAR T cell preparation protocol and manageable CRS in most. Disclosures No relevant conflicts of interest to declare.


Hematology ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 487-493
Author(s):  
Emily M. Hsieh ◽  
Rayne H. Rouce

Abstract Chimeric antigen receptor (CAR) T-cell therapy has changed the landscape of immunotherapy for B-cell malignancies, including mature B-cell lymphomas. Although two CD19 CAR T-cell products have been commercially approved to treat relapsed/refractory B-cell lymphomas, outcomes in these patients remain inferior to those of patients with B-cell leukemia, regardless of therapy. Recent clinical studies and preclinical reports suggest that certain characteristics, such as the suppressive lymphoma tumor microenvironment and inferior endogenous T-cell fitness, may contribute to discrepant responses in these patients. In addition, these studies revealed that limited CAR T-cell persistence and tumor antigen escape, which also impact B-cell acute lymphoblastic leukemia, may play a more prominent role in lymphoma. Multiple promising strategies to overcome these barriers have advanced to clinical trials. In this review, we assess CAR T-cell therapies for pediatric relapsed/refractory mature B-cell lymphomas, potential obstacles diminishing antitumor activity and limiting CAR T-cell persistence, and current strategies to overcome these obstacles.


2021 ◽  
Vol 27 (3) ◽  
pp. S74
Author(s):  
Pablo Domizi ◽  
Astraea Jager ◽  
Jolanda Sarno ◽  
Charles G. Mullighan ◽  
Stephan Grupp ◽  
...  

2020 ◽  
Vol 12 ◽  
pp. 175883592096296
Author(s):  
Qing Cai ◽  
Mingzhi Zhang ◽  
Zhaoming Li

Chimeric antigen receptor (CAR) T-cell therapy is a rapidly developing method for adoptive immunotherapy of tumours in recent years. CAR T-cell therapies have demonstrated unprecedented efficacy in the treatment of patients with haematological malignancies. A 90% complete response (CR) rate has been reported in patients with advanced relapse or refractory acute lymphoblastic leukaemia, while >50% CR rates have been reported in cases of chronic lymphocytic leukaemia and partial B-cell lymphoma. Despite the high CR rates, a subset of the patients with complete remission still relapse. The mechanism of development of resistance is not clearly understood. Some patients have been reported to demonstrate antigen-positive relapse, whereas others show antigen-negative relapses. Patients who relapse following CAR T-cell therapy, have very poor prognosis and novel approaches to overcome resistance are required urgently. Herein, we have reviewed current literature and research that have investigated the strategies to overcome resistance to CAR T-cell therapy.


2020 ◽  
Vol 38 (32) ◽  
pp. 3805-3815
Author(s):  
Kathryn M. Cappell ◽  
Richard M. Sherry ◽  
James C. Yang ◽  
Stephanie L. Goff ◽  
Danielle A. Vanasse ◽  
...  

PURPOSE Anti-CD19 chimeric antigen receptors (CARs) are artificial fusion proteins that cause CD19-specific T-cell activation. Durability of remissions and incidence of long-term adverse events are critical factors determining the utility of anti-CD19 CAR T-cell therapy, but long-term follow-up of patients treated with anti-CD19 CAR T cells is limited. This work provides the longest follow-up of patients in remission after anti-CD19 CAR T-cell therapy. METHODS Between 2009 and 2015, we administered 46 CAR T-cell treatments to 43 patients (ClinicalTrials.gov identifier: NCT00924326 ). Patients had relapsed B-cell malignancies of the following types: diffuse large B-cell lymphoma or primary mediastinal B-cell lymphoma (DLBCL/PMBCL; n = 28), low-grade B-cell lymphoma (n = 8), or chronic lymphocytic leukemia (CLL; n = 7). This report focuses on long-term outcomes of these patients. The CAR used was FMC63-28Z; axicabtagene ciloleucel uses the same CAR. Cyclophosphamide plus fludarabine conditioning chemotherapy was administered before CAR T cells. RESULTS The percentages of CAR T-cell treatments resulting in a > 3-year duration of response (DOR) were 51% (95% CI, 35% to 67%) for all evaluable treatments, 48% (95% CI, 28% to 69%) for DLBCL/PMBCL, 63% (95% CI, 25% to 92%) for low-grade lymphoma, and 50% (95% CI, 16% to 84%) for CLL. The median event-free survival of all 45 evaluable treatments was 55 months. Long-term adverse effects were rare, except for B-cell depletion and hypogammaglobulinemia. Median peak blood CAR-positive cell levels were higher among patients with a DOR of > 3 years (98/µL; range, 9-1,217/µL) than among patients with a DOR of < 3 years (18/µL; range, 0-308/μL, P = .0051). CONCLUSION Complete remissions of a variety of B-cell malignancies lasting ≥ 3 years occurred after 51% of evaluable anti-CD19 CAR T-cell treatments. Remissions of up to 9 years are ongoing. Late adverse events were rare.


2018 ◽  
Vol 19 (12) ◽  
pp. 4118 ◽  
Author(s):  
Christopher Funk ◽  
Christopher Petersen ◽  
Neera Jagirdar ◽  
Sruthi Ravindranathan ◽  
David Jaye ◽  
...  

Clinical trials of chimeric antigen receptor (CAR) T cells in hematologic malignancy associate remissions with two profiles of CAR T cell proliferation kinetics, which differ based upon costimulatory domain. Additional T cell intrinsic factors that influence or predict clinical response remain unclear. To address this gap, we report the case of a 68-year-old woman with refractory/relapsed diffuse large B cell lymphoma (DLBCL), treated with tisagenlecleucel (anti-CD19), with a CD137 costimulatory domain (4-1BB) on an investigational new drug application (#16944). For two months post-infusion, the patient experienced dramatic regression of subcutaneous nodules of DLBCL. Unfortunately, her CAR T exhibited kinetics unassociated with remission, and she died of DLBCL-related sequelae. Serial phenotypic analysis of peripheral blood alongside sequencing of the β-peptide variable region of the T cell receptor (TCRβ) revealed distinct waves of oligoclonal T cell expansion with dynamic expression of immune checkpoint molecules. One week prior to CAR T cell contraction, T cell immunoglobulin mucin domain 3 (Tim-3) and programmed cell death protein 1 (PD-1) exhibited peak expressions on both the CD8 T cell (Tim-3 ≈ 50%; PD-1 ≈ 17%) and CAR T cell subsets (Tim-3 ≈ 78%; PD-1 ≈ 40%). These correlative observations draw attention to Tim-3 and PD-1 signaling pathways in context of CAR T cell exhaustion.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5592
Author(s):  
Edit Porpaczy ◽  
Philipp Wohlfarth ◽  
Oliver Königsbrügge ◽  
Werner Rabitsch ◽  
Cathrin Skrabs ◽  
...  

Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) is associated with poor outcome. The clinical behavior and genetic landscape of DLBCL is heterogeneous and still not fully understood. TP53 mutations in DLBCL have been identified as markers of poor prognosis and are often associated with therapeutic resistance. Chimeric antigen receptor T-cell therapy is an innovative therapeutic concept and represents a game-changing therapeutic option by supporting the patient’s own immune system to kill the tumor cells. We investigated the impact of TP53 mutations on the overall survival of refractory/relapsed DLBCL patients treated with comparable numbers of therapy lines. The minimum number of therapy lines was 2 (median 4), including either anti-CD19 CAR T-cell therapy or conventional salvage therapy. A total of 170 patients with DLBCL and high-grade B-cell lymphoma with MYC, BCL2, and/or BCL6 rearrangements (DHL/THL), diagnosed and treated in our hospital between 2000 and 2021, were included. Twenty-nine of them received CAR T-cell therapy. TP53 mutations were found in 10/29 (35%) and 31/141 (22%) of patients in the CAR T-cell and conventional groups, respectively. Among the 141 patients not treated with CAR T cells, TP53 mutation was an independent prognostic factor for overall survival (OS) (median 12 months with TP53 vs. not reached without TP53 mutation, p < 0.005), but in the CAR T cell treated group, this significance could not be shown (median OS 30 vs. 120 months, p = 0.263). The findings from this monocentric retrospective study indicate that TP53 mutation status does not seem to affect outcomes in DLBCL patients treated with CAR T-cell therapy. Detailed evaluation in large cohorts is warranted.


Blood ◽  
2021 ◽  
Author(s):  
Bijal D Shah ◽  
Michael R. Bishop ◽  
Olalekan O Oluwole ◽  
Aaron C Logan ◽  
Maria R. Baer ◽  
...  

ZUMA-3 is a phase 1/2 study evaluating KTE-X19, an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, in adult relapsed/refractory (R/R) B-ALL. We report the phase 1 results. Following fludarabine/cyclophosphamide lymphodepletion, patients received a single infusion of KTE-X19 at 2, 1, or 0.5×106 cells/kg. The rate of dose-limiting toxicities (DLTs) within 28 days following KTE-X19 infusion was the primary endpoint. KTE-X19 was manufactured for 54 enrolled patients and administered to 45 (median age: 46 years [range, 18-77]). No DLTs occurred in the DLT-evaluable cohort. Grade ≥3 cytokine release syndrome (CRS) and neurologic events (NE) occurred in 31% and 38% of patients, respectively. To optimize the benefit-risk ratio, revised adverse event (AE) management for CRS and NE (earlier steroid use for NE and tocilizumab only for CRS) was evaluated at 1×106 cells/kg KTE-X19. In the 9 patients treated under revised AE management, 33% had grade 3 CRS and 11% had grade 3 NE, with no grade 4/5 NE. The overall complete remission rate correlated with CAR T-cell expansion and was 83% in patients treated with 1×106 cells/kg and 69% in all patients. Minimal residual disease was undetectable in all responding patients. At 22.1 months (range, 7.1-36.1) median follow-up, the median duration of remission was 17.6 months (95% CI, 5.8-17.6) in patients treated with 1×106 cells/kg and 14.5 months (95% CI, 5.8-18.1) in all patients. KTE-X19 treatment provided a high response rate and tolerable safety in adults with R/R B-ALL. Phase 2 is ongoing at 1×106 cells/kg with revised AE management.


Sign in / Sign up

Export Citation Format

Share Document