scholarly journals Rapid diagnosis of Toxoplasma gondii using loop-mediated isothermal amplification assay in camels and small ruminants

Author(s):  
Gamil S. G. Zeedan ◽  
Abeer M. Abdalhamed ◽  
Raafat M. Shaapan ◽  
Amira H. El-Namaky

Abstract Background This study was conducted to detect the presence of T. gondii in milk and blood samples using three different assays: enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and loop-mediated isothermal amplification assay (LAMP). Whole blood, serum, and milk samples were collected from goats (n = 156), sheep (n = 261), and camels (n = 108) in different governorates in Egypt from December 2019 to February 2021 and screened by ELISA for anti-Toxoplasma IgG antibodies before DNA extraction. The target T. gondii DNA gene was detected and evaluated using the LAMP assay compared to PCR. Results T. gondii antibodies were found in milk and serum samples at the rates of (29.26%) and (36.58%) in camels, (34.18%) and (35.89%) in sheep, and (33.7%) and (36.36%) in goats, respectively. Similar to PCR, the percentages of LAMP tests for the detection of the T. gondii DNA gene in milk and blood samples of camels, sheep, and goats were (4.8, 14.63), (6.83, 7.69), and (7.79, 9.09), respectively. LAMP's sensitivity for detecting T. gondii in milk and blood samples, which was identical to that of PCR, was 100%. Conclusions The findings clearly demonstrated that there were no variations in T. gondii detection capabilities in milk and blood samples from various animals using both PCR and LAMP tests. It provides a quick, precise, and sensitive method of detecting T. gondii in a variety of samples that may be used both in the field and in laboratory diagnosis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Daniel Moreira de Avelar ◽  
Débora Moreira Carvalho ◽  
Ana Rabello

Visceral leishmaniasis (VL) is considered a major public health concern in Brazil and several regions of the world. A recent advance in the diagnosis of infectious diseases was the development of loop-mediated isothermal amplification (LAMP). The aim of this study was to develop and evaluate a new LAMP assay for detection of K26 antigen-coding gene of L. donovani complex. A total of 219 blood samples of immunocompetent patients, including 114 VL cases and 105 non-VL cases, were analyzed for the diagnosis of VL in the present study. Diagnostic accuracy was calculated against a combination of parasitological and/or serological tests as a reference standard. The results were compared to those of kDNA Leishmania-PCR. The detection limit for the K26-Lamp assay was 1fg L. infantum purified DNA and 100 parasites/mL within 60 min of amplification time with visual detection for turbidity. The assay was specific for L. donovani complex. Sensitivity, specificity, and accuracy were 98.2%, 98.1%, and 98.2%, respectively, for K26-LAMP and 100%, 100%, and 100%, respectively, for kDNA Leishmania-PCR. Excellent agreement was observed between K26-LAMP and kDNA Leishmania-PCR assays (K = 0.96). A highly sensitive and specific LAMP assay targeting K26 antigen-coding gene of L. donovani complex was developed for diagnosis in peripheral blood samples of VL patients.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 909-915 ◽  
Author(s):  
Gavin J. Ash ◽  
Jillian M. Lang ◽  
Lindsay R. Triplett ◽  
Benjamin J. Stodart ◽  
Valérie Verdier ◽  
...  

The vast amount of data available through next-generation sequencing technology is facilitating the design of diagnostic marker systems. This study reports the use of draft genome sequences from the bacterial plant pathogen Pseudomonas fuscovaginae, the cause of sheath brown rot of rice, to describe the genetic diversity within a worldwide collection of strains representing the species. Based on a comparative analysis with the draft sequences, primers for a loop-mediated isothermal amplification (LAMP) assay were developed to identify P. fuscovaginae. The assay reported here reliably differentiated strains of P. fuscovaginae isolated from rice from a range of other bacteria that are commonly isolated from rice and other plants using a primer combination designated Pf8. The LAMP assay identified P. fuscovaginae purified DNA, live or heat-killed cells from pure cultures, and detected the bacterium in extracts or exudates from infected host plant material. The P. fuscovaginae LAMP assay is a suitable diagnostic tool for the glasshouse and laboratory and could be further developed for in-field surveys.


2020 ◽  
Vol 56 (24) ◽  
pp. 3536-3538 ◽  
Author(s):  
Rongxing Zhou ◽  
Yongya Li ◽  
Tianyu Dong ◽  
Yanan Tang ◽  
Feng Li

CRISPR Cas12a enables a sequence-specific plasmonic LAMP assay with dual complementary color readouts.


2014 ◽  
Vol 77 (9) ◽  
pp. 1593-1598 ◽  
Author(s):  
HEE-JIN DONG ◽  
AE-RI CHO ◽  
TAE-WOOK HAHN ◽  
SEONGBEOM CHO

Campylobacter jejuni is a leading cause of bacterial foodborne disease worldwide. The detection of this organism in cattle and their environment is important for the control of C. jejuni transmission and the prevention of campylobacteriosis. Here, we describe the development of a rapid and sensitive method for the detection of C. jejuni in naturally contaminated cattle farm samples, based on real-time loop-mediated isothermal amplification (LAMP) of the hipO gene. The LAMP assay was specific (100%inclusivity and exclusivity for 84 C. jejuni and 41 non–C. jejuni strains, respectively), sensitive (detection limit of 100 fg/μl), and quantifiable (R2 = 0.9133). The sensitivity of the LAMP assay was then evaluated for its application to the naturally contaminated cattle farm samples. C. jejuni strains were isolated from 51 (20.7%) of 246 cattle farm samples, and the presence of the hipO gene was tested using the LAMP assay. Amplification of the hipO gene by LAMP within 30 min (mean =10.8 min) in all C. jejuni isolates (n = 51) demonstrated its rapidity and accuracy. Next, template DNA was prepared from a total of 186 enrichment broth cultures of cattle farm samples either by boiling or using a commercial kit, and the sensitivity of detection of C. jejuni was compared between the LAMP and PCR assays. In DNA samples prepared by boiling, the higher sensitivity of the LAMP assay (84.4%) compared with the PCR assay (35.5%) indicates that it is less susceptible to the existence of inhibitors in sample material. In DNA samples prepared using a commercial kit, both the LAMP and PCR assays showed 100% sensitivity. We anticipate that the use of this rapid, sensitive, and simple LAMP assay, which is the first of its kind for the identification and screening of C. jejuni in cattle farm samples, may play an important role in the prevention of C. jejuni contamination in the food chain, thereby reducing the risk of human campylobacteriosis.


2009 ◽  
Vol 60 (8) ◽  
pp. 2167-2172 ◽  
Author(s):  
A. Inomata ◽  
N. Kishida ◽  
T. Momoda ◽  
M. Akiba ◽  
S. Izumiyama ◽  
...  

We describe a novel assay for simple, rapid and high-sensitive detection of Cryptosporidium oocysts in water samples using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP). The assay is based on the detection of 18S rRNA specific for Cryptosporidium oocysts. The detection limit of the developed RT-LAMP assay was as low as 6 × 10−3 oocysts/test tube, which theoretically enables us to detect a Cryptosporidium oocyst and perform duplicated tests even if water samples contain only one oocyst. The developed RT-LAMP assay could more sensitively detect Cryptosporidium oocysts in real water samples than the conventional assay based on microscopic observation.


2014 ◽  
Vol 63 (2) ◽  
pp. 248-251 ◽  
Author(s):  
Yuta Aizawa ◽  
Tomohiro Oishi ◽  
Shinya Tsukano ◽  
Tetsuo Taguchi ◽  
Akihiko Saitoh

Loop-mediated isothermal amplification (LAMP) is a cost-effective and rapid method for identifying Mycoplasma pneumoniae (MP). We investigated the utility of the LAMP assay in diagnosing MP pneumonia among children in a clinical setting. In this prospective study, the cause of community-acquired pneumonia was evaluated in 111 patients for whom MP was the suspected pathogen. All participants were patients at a city hospital in Japan between April 2012 and September 2012. Throat swabs for the LAMP assay were obtained at admission, and paired serum samples to measure antibody titres to MP by particle agglutination were obtained at admission and during convalescence. Overall, 45 of 111 (41 %) patients had a fourfold or greater increase in MP titres and received a diagnosis of MP pneumonia. Among them, 43 (96 %) patients (median age, 9 years) were positive on the LAMP assay and had a fourfold or greater increase in MP titres. The median interval from fever onset to collection of throat swabs was 7 days (range, 4–10 days). As compared with paired serum titres, the LAMP assay enabled quicker diagnosis of MP (median interval, 13 vs. 7 days), thereby allowing early initiation of appropriate antimicrobial therapy.


2018 ◽  
Author(s):  
M.K. PrasannaKumar ◽  
P. Buela Parivallal ◽  
C. Manjunath ◽  
H.B. Mahesh ◽  
Karthik S Narayan ◽  
...  

AbstractBacterial blight in pomegranate caused byXanthomonas axonopodispv.punicae(Xap) is an increasing threat for pomegranate cultivation in India. To prevent the economic losses, it is pivotal to detect the infection in latent stages rather than in later stages. We have developed an enhanced method termed as loop-mediated isothermal amplification (LAMP) technique to evaluate for the latent detection of Xap in pomegranate using six set of specific primers. Three DNA intercalating dyes were used, such as Ethidium bromide, hydroxynaphthol blue (HNB) and SYBR Green resulted in visualising the positivity for LAMP assay. The reaction time and temperature were to be 65°C from 30 min onwards, for the dyes and its sensitivity was observed up to 10−7ng in the LAMP assay. For field applicability, LAMP assay detected Xap on 7thday post infection while the PCR amplified Xap after 11thday post infection. Finally, the specificity of LAMP assay was validated to be positive with ten Xap isolates for its accuracy and 29 non-Xap bacterial isolates showed negative results. Moreover, this method could be used as a better alternative to PCR based methods, for early detection of the pathogens.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1629
Author(s):  
Alexander Domnich ◽  
Andrea Orsi ◽  
Donatella Panatto ◽  
Vanessa De Pace ◽  
Valentina Ricucci ◽  
...  

Although the reverse transcription-polymerase chain reaction (RT-PCR) is considered a standard-of-care assay for the laboratory diagnosis of SARS-CoV-2, several limitations of this method have been described. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is an alternative molecular assay and is potentially able to overcome some intrinsic shortcomings of RT-PCR. In this study, we evaluated the diagnostic performance of the novel HG COVID-19 RT-LAMP assay. In this retrospective analysis, a total of 400 routinely collected leftover nasopharyngeal samples with a known RT-PCR result were tested by means of the HG COVID-19 RT-LAMP assay. The overall sensitivity and specificity values of HG COVID-19 RT-LAMP versus RT-PCR were 97.0% (95% CI: 93.6–98.9%) and 98.5% (95% CI: 95.7–99.7%), respectively. Inter-assay agreement was almost perfect (κ = 0.96). Concordance was perfect in samples with high viral loads (cycle threshold < 30). The average time to a positive result on RT-LAMP was 17 min. HG COVID-19 RT-LAMP is a reliable molecular diagnostic kit for detecting SARS-CoV-2, and its performance is comparable to that of RT-PCR. Shorter turnaround times and the possibility of performing molecular diagnostics in the point-of-care setting make it a valuable option for facilities without sophisticated laboratory equipment.


Sign in / Sign up

Export Citation Format

Share Document