scholarly journals Ultrastructural and molecular implications of ecofriendly made silver nanoparticles treatments in pea (Pisum sativum L.)

Author(s):  
May Labeeb ◽  
Abdelfattah Badr ◽  
Soliman A. Haroun ◽  
Magdy Z. Mattar ◽  
Aziza S. El-kholy

Abstract Background Silver nanoparticles (AgNPs) are the most widely used nanomaterial in agricultural and environmental applications. In this study, the impact of AgNPs solutions at 20 mg/L, 40 mg/L, 80 mg/L, and 160 mg/L on cell ultrastructure have been examined in pea (Pisum sativum L) using a transmission electron microscope (TEM). The effect of AgNPs treatments on the α, β esterase (EST), and peroxidase (POX) enzymes expression as well as gain or loss of inter-simple sequence repeats (ISSRs) markers has been described. Results Different structural malformations in the cell wall and mitochondria, as well as plasmolysis and vacuolation were recorded in root cells. Damaged chloroplast and mitochondria were frequently observed in leaves and the osmiophilic plastoglobuli were more observed as AgNPs concentration increased. Starch grains increased by the treatment with 20 mg/L AgNPs. The expressions of α, β EST, and POX were slightly changed but considerable polymorphism in ISSR profiles, using 17 different primers, were scored indicating gain or loss of gene loci as a result of AgNPs treatments. This indicates considerable variations in genomic DNA and point mutations that may be induced by AgNPs as a genotoxic nanomaterial. Conclusion AgNPs may be used to induce genetic variation at low concentrations. However, considerations should be given to the uncontrolled use of nanoparticles and calls for evaluating their impact on plant growth and potential genotoxicity are justified.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Reda E. Abdelhameed ◽  
Nagwa I. Abu-Elsaad ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rabab A. Metwally

Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 921
Author(s):  
Simonetta Muccifora ◽  
Hiram Castillo-Michel ◽  
Francesco Barbieri ◽  
Lorenza Bellani ◽  
Monica Ruffini Castiglione ◽  
...  

Biosolids (Bs) for use in agriculture are an important way for introducing and transferring TiO2 nanoparticles (NPs) to plants and food chain. Roots of Pisum sativum L. plants grown in Bs-amended soils spiked with TiO2 800 mg/kg as rutile NPs, anatase NPs, mixture of both NPs and submicron particles (SMPs) were investigated by Transmission Electron Microscopy (TEM), synchrotron radiation based micro X-ray Fluorescence and micro X-ray Absorption Near-Edge Structure (µXRF/µXANES) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). TEM analysis showed damages in cells ultrastructure of all treated samples, although a more evident effect was observed with single anatase or rutile NPs treatments. Micro-XRF and TEM evidenced the presence of nano and SMPs mainly in the cortex cells near the rhizodermis. Micro-XRF/micro-XANES analysis revealed anatase, rutile, and ilmenite as the main TiO2 polymorphs in the original soil and Bs, and the preferential anatase uptake by the roots. For all treatments Ti concentration in the roots increased by 38–56%, however plants translocation factor (TF) increased mostly with NPs treatment (261–315%) and less with SMPs (about 85%), with respect to control. In addition, all samples showed a limited transfer of TiO2 to the shoots (very low TF value). These findings evidenced a potential toxicity of TiO2 NPs present in Bs and accumulating in soil, suggesting the necessity of appropriate regulations for the occurrence of NPs in Bs used in agriculture.


2021 ◽  
Author(s):  
Pandiyarajan C ◽  
Rameshkumar Perumal ◽  
Murugesan S ◽  
Selvaraj M

Abstract Nitrobenzene (NB) is toxic even at low concentrations and hence, its contamination in the environment is a pervasive concern. The electrochemical techniques have emerged as rosy method to sense and degrade NB and graphitic carbon nitride (g-C3N4) catalysts are found to be promising for this. In this study, silver nanoparticles (AgNPs) decorated N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDAS) modified graphitic carbon nitride nanocomposites (EDAS/(g-C3N4-Ag)NC) having various silver concentrations are prepared through a facile method and applied for the electrochemical sensing of NB derivatives. UV-vis absorption edge at 430 nm together with a broad surface plasmon resonance (SPR) peak at 450 nm indicates the existence of AgNPs on the g-C3N4 nanosheets. FT-IR spectra endorse the presence of g-C3N4 nanosheets in the composite. The presence of Ag in EDAS/(g-C3N4-Ag)NC is confirmed by transmission electron microscopy, energy dispersive X-ray analysis and cyclic voltammetry (CV). The nanocomposite prepared with 2 mM Ag+ shows superb electrocatalytic activity towards the reduction of nitrobenzene and its derivatives. Sensitivity of the modified electrode and limit of detection (LOD) for NB assessed by square wave voltammetry are found to be 0.594 A M− 1 cm− 2 and 2 µM, respectively, in the linear range of 5–50 µM.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ayşe Baran ◽  
Cumali Keskin ◽  
Mehmet Fırat Baran ◽  
Irada Huseynova ◽  
Rovshan Khalilov ◽  
...  

Metallic nanoparticles are valuable materials and have a range of uses. Nanoparticles synthesized from plant wastes by environment-friendly methods have attracted the attention of researchers in recent years. Also, the advantages of biological resources and synthesis methods are attracting attention. In this study, silver nanoparticles were synthesized from Ananas comosus fruit peels using ecofriendly method steps. The characterization of the particles obtained was determined by using a UV-visible spectrophotometer (UV-Vis.), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction diffractometer (XRD), Fourier scanning electron microscope (FESEM), and transmission electron microscopy (TEM). The nanoparticles showed maximum absorbance at 463 nm, measuring 11.61 in crystal nanosize, and presented spherical in appearance. An antimicrobial activity test was determined with the minimum inhibition concentration (MIC) method. The nanoparticles showed promising inhibitory activity on the Gram-positive and Gram-negative pathogen microorganisms (Escherichia coli ATCC25922, Staphylococcus aureus ATCC29213, Bacillus subtilis ATCC11774, Pseudomonas aeruginosa ATCC27833 bacteria, and Candida albicans yeast) at low concentrations. The cytotoxic and growth inhibitory effects of silver nanoparticles on different cancer cell lines were examined via the MTT assay.


Author(s):  
J. W. Horn ◽  
B. J. Dovey-Hartman ◽  
V. P. Meador

Osmium tetroxide (OsO4) is a universally used secondary fixative for routine transmission electron microscopic evaluation of biological specimens. Use of OsO4 results in good ultrastructural preservation and electron density but several factors, such as concentration, length of exposure, and temperature, impact overall results. Potassium ferricyanide, an additive used primarily in combination with OsO4, has mainly been used to enhance the contrast of lipids, glycogen, cell membranes, and membranous organelles. The purpose of this project was to compare the secondary fixative solutions, OsO4 vs. OsO4 with potassium ferricyanide, and secondary fixative temperature for determining which combination gives optimal ultrastructural fixation and enhanced organelle staining/contrast.Fresh rat liver samples were diced to ∼1 mm3 blocks, placed into porous processing capsules/baskets, preserved in buffered 2% formaldehyde/2.5% glutaraldehyde solution, and rinsed with 0.12 M cacodylate buffer (pH 7.2). Tissue processing capsules were separated (3 capsules/secondary fixative.solution) and secondarily fixed (table) for 90 minutes. Tissues were buffer rinsed, dehydrated with ascending concentrations of ethanol solutions, infiltrated, and embedded in epoxy resin.


Author(s):  
Robert C. Cieslinski ◽  
H. Craig Silvis ◽  
Daniel J. Murray

An understanding of the mechanical behavior polymers in the ductile-brittle transition region will result in materials with improved properties. A technique has been developed that allows the realtime observation of dynamic plane stress failure mechanisms in the transmission electron microscope. With the addition of a cryo-tensile stage, this technique has been extented to -173°C, allowing the observation of deformation during the ductile-brittle transition.The technique makes use of an annealed copper cartridge in which a thin section of bulk polymer specimen is bonded and plastically deformed in tension in the TEM using a screw-driven tensile stage. In contrast to previous deformation studies on solvent-cast films, this technique can examine the frozen-in morphology of a molded part.The deformation behavior of polypropylene and polypropylene impact modified with EPDM (ethylene-propylene diene modified) and PE (polyethylene) rubbers were investigated as function of temperature and the molecular weight of the impact modifier.


2018 ◽  
Author(s):  
Hossam H Tayeb ◽  
Marina Stienecker ◽  
Anton Middelberg ◽  
Frank Sainsbury

Biosurfactants, are surface active molecules that can be produced by renewable, industrially scalable biologic processes. DAMP4, a designer biosurfactant, enables the modification of interfaces via genetic or chemical fusion to functional moieties. However, bioconjugation of addressable amines introduces heterogeneity that limits the precision of functionalization as well as the resolution of interfacial characterization. Here we designed DAMP4 variants with cysteine point mutations to allow for site-specific bioconjugation. The DAMP4 variants were shown to retain the structural stability and interfacial activity characteristic of the parent molecule, while permitting efficient and specific conjugation of polyethylene glycol (PEG). PEGylation results in a considerable reduction on the interfacial activity of both single and double mutants. Comparison of conjugates with one or two conjugation sites shows that both the number of conjugates as well as the mass of conjugated material impacts the interfacial activity of DAMP4. As a result, the ability of DAMP4 variants with multiple PEG conjugates to impart colloidal stability on peptide-stabilized emulsions is reduced. We suggest that this is due to constraints on the structure of amphiphilic helices at the interface. Specific and efficient bioconjugation permits the exploration and investigation of the interfacial properties of designer protein biosurfactants with molecular precision. Our findings should therefore inform the design and modification of biosurfactants for their increasing use in industrial processes, and nutritional and pharmaceutical formulations.


2020 ◽  
Vol 24 (21) ◽  
pp. 2475-2497
Author(s):  
Andrea Verónica Rodríguez-Mayor ◽  
German Jesid Peralta-Camacho ◽  
Karen Johanna Cárdenas-Martínez ◽  
Javier Eduardo García-Castañeda

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.


Author(s):  
Hossam Ebaid ◽  
Mohamed Habila ◽  
Iftekhar Hassan ◽  
Jameel Al-Tamimi ◽  
Mohamed S. Omar ◽  
...  

Background: Hepatotoxicity remains an important clinical challenge. Hepatotoxicity observed in response to toxins and hazardous chemicals may be alleviated by delivery of the curcumin in silver nanoparticles (AgNPs-curcumin). In this study, we examined the impact of AgNPs-curcumin in a mouse model of carbon tetrachloride (CCl4)-induced hepatic injury. Methods: Male C57BL/6 mice were divided into three groups (n=8 per group). Mice in group 1 were treated with vehicle control alone, while mice in Group 2 received a single intraperitoneal injection of 1 ml/kg CCl4 in liquid paraffin (1:1 v/v). Mice in group 3 were treated with 2.5 mg/kg AgNPs-curcumin twice per week for three weeks after the CCl4 challenge. Results: Administration of CCL4 resulted in oxidative dysregulation, including significant reductions in reduced glutathione and concomitant elevations in the level of malondialdehyde (MDA). CCL4 challenge also resulted in elevated levels of serum aspartate transaminase (AST) and alanine transaminase (ALT); these findings were associated with the destruction of hepatic tissues. Treatment with AgNPs-curcumin prevented oxidative imbalance, hepatic dysfunction, and tissue destruction. A comet assay revealed that CCl4 challenge resulted in significant DNA damage as documented by a 70% increase in nuclear DNA tail-length; treatment with AgNPs-curcumin inhibited the CCL4-mediated increase in nuclear DNA tail-length by 34%. Conclusion: Administration of AgNPs-curcumin resulted in significant antioxidant activity in vivo. This agent has the potential to prevent the hepatic tissue destruction and DNA damage that results from direct exposure to CCL4.


2019 ◽  
Vol 25 (6) ◽  
pp. 1466-1470 ◽  
Author(s):  
Rituparna Chatterjee ◽  
Subhajit Saha ◽  
Karamjyoti Panigrahi ◽  
Uttam Kumar Ghorai ◽  
Gopes Chandra Das ◽  
...  

AbstractIn this work, strongly blue emitting Ce3+-activated BaAl2O4 nanophosphors were successfully synthesized by a sol–gel technique. The crystal structure, morphology, and microstructure of the nanophosphors have been studied by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The photoluminescence spectra show the impact of concentration variation of Ce3+ on the photoluminescence emission of the phosphor. These nanophosphors display intense blue emission peaking at 422 nm generated by the Ce3+ 5d → 4f transition under 350 nm excitation. Our results reveal that this nanophosphor has the capability to take part in the emergent domain of solid-state lighting and field-emission display devices.


Sign in / Sign up

Export Citation Format

Share Document