scholarly journals The potential cost of regulation of methane and nitrous oxide emissions in U.S. agriculture

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Tshepelayi Kabata ◽  
Lilyan E. Fulginiti ◽  
Richard K. Perrin

Abstract Background Most studies on the environmental impacts of agriculture have attempted to measure environmental impacts but have not assessed the ability of the sector to reduce or mitigate such impacts. Only a few studies have examined greenhouse gas emissions from the sector. This paper assesses the ability of states in the U.S. to reduce agricultural emissions of methane and nitrous oxide, two major greenhouse gases (GHGs) with important global warming potential. Methods The analysis evaluates Färe’s PAC (pollution abatement cost) for each state and year, a measure of the potential opportunity costs of subjecting the sector to GHG emissions regulation. We use both hyperbolic and directional distance functions to specify agricultural technology with good and bad outputs. Results and conclusions We find that such regulations might reduce output by an average of about 2%, although the results for individual states vary quite widely.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2010 ◽  
Vol 39 (suppl spe) ◽  
pp. 458-464 ◽  
Author(s):  
Ermias Kebreab ◽  
Anders Strathe ◽  
James Fadel ◽  
Luis Moraes ◽  
James France

The growing global demand for meat and particularly in countries such as Brazil is expected to increase intensive animal production. Consequently the main pollutants of interest are nitrogen (N), phosphorus (P) and greenhouse gases (GHG). Nitrogen can be a problem through nitrate leaching to water bodies, ammonia, and nitrous oxide emissions to air. Phosphorus loading in soil from manure application can be the main issue due to the tendency of P to accumulate in soil and leach to groundwater and rivers. The sources of agricultural GHG emissions include methane from enteric fermentation, manure storage and spreading, and nitrous oxide mainly from application of manure on land. Dietary manipulation has proven to be an effective tool to reduce nutrient/mineral pollution and GHG emissions. Several studies have shown that decreasing crude protein in the diet could reduce N excretion and ammonia volatilization substantially without compromising productivity. Similarly, reducing P intake in dairy cattle has been shown to reduce P excretion by up to 10%. Changing the type of N and P consumed and energy level of diet has also been reported to affect the amount and type of N and P excreted. Dietary manipulation also has an impact on the amount of GHG emissions, particularly, from enteric fermentation. Feeding cattle with a high starch and low fiber diet, for example, reduces acetate production in the rumen, and leads to lower methane production. Emissions from stored manure from high fiber fed animals tend to be higher. Evidence is also available that diet affects emissions from manure applied soil. As level of production is increased to meet global demand for ruminant meat and milk products, dietary manipulation will be useful in addressing environmental concerns.


Author(s):  
Anna Jędrejek

The purpose of this study was to estimate nitrogen oxide emissions from soils used for agricultural purposes by voivodships. Compared N2O emissions were estimated according to the recommended IPCC (tier 1) method with simulated emissions using the DNDC (tier 3) model. Analyses were done for crop rotation (winter rape, winter wheat, winter wheat, winter triticale) in four cropping systems. Moreover, simulated N2O emissions from winter rape and winter triticale cultivation showed lower emissions and constituted 1475% and 13-76% of IPCC estimated emissions, respectively. The use of the model also enabled the determination of factors, which have an impact on nitrous oxide emissions and define its regional differentiation. The analysis showed that with increasing initial soil organic content, emissions of N2O rise and decrease with increasing precipitation or carbon sequestration. Considering the requirements for reduction GHG emissions, improving the methodology used in estimating nitrous oxide emissions is of significant practical value.


Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 76
Author(s):  
Xia Zhu-Barker ◽  
Mark Easter ◽  
Amy Swan ◽  
Mary Carlson ◽  
Lucas Thompson ◽  
...  

Greenhouse gas (GHG) emissions from arid irrigated agricultural soil in California have been predicted to represent 8% of the state’s total GHG emissions. Although specialty crops compose the majority of the state’s crops in both economic value and land area, the portion of GHG emissions contributed by them is still highly uncertain. Current and emerging soil management practices affect the mitigation of those emissions. Herein, we review the scientific literature on the impact of soil management practices in California specialty crop systems on GHG nitrous oxide emissions. As such studies from most major specialty crop systems in California are limited, we focus on two annual and two perennial crops with the most data from the state: tomato, lettuce, wine grapes and almond. Nitrous oxide emission factors were developed and compared to Intergovernmental Panel on Climate Change (IPCC) emission factors, and state-wide emissions for these four crops were calculated for specific soil management practices. Dependent on crop systems and specific management practices, the emission factors developed in this study were either higher, lower or comparable to IPCC emission factors. Uncertainties caused by low gas sampling frequency in these studies were identified and discussed. These uncertainties can be remediated by robust and standardized estimates of nitrous oxide emissions from changes in soil management practices in California specialty crop systems. Promising practices to reduce nitrous oxide emissions and meet crop production goals, pertinent gaps in knowledge on this topic and limitations of this approach are discussed.


Author(s):  
Canh Phuc Nguyen ◽  
Thai-Ha Le ◽  
Christophe Schinckus ◽  
Thanh Dinh Su

Abstract Using the panel data of 89 economies from 1995–2012, this study examines the major drivers of agricultural emissions while considering affluence, energy intensity, agriculture value added and economic integration. We find long-run cointegration among the variables. Furthermore, our empirical results based on a dynamic fixed effects autoregressive distributed lag model show that the increases in income and economic integration – proxied by trade and foreign direct investment (FDI) – are the major contributors to higher greenhouse gas (GHG) emissions from agriculture in the short run. Additionally, the increases in income, agriculture value added and energy consumption are the major drivers of agricultural emissions in the long run. Notably, trade openness and FDI inflows have significantly negative effects on GHG emissions from agriculture in the long run. These results apply to methane and nitrous oxide emissions. The empirical findings vary across three subsamples of countries at different development stages.


2020 ◽  
Vol 60 (1) ◽  
pp. 10 ◽  
Author(s):  
R. J. Eckard ◽  
H. Clark

The Australasian dairy industry is facing the dual challenges of increasing productivity, while also reducing its emissions of the greenhouse gases (GHG) methane and nitrous oxide. Following the COP21 Paris Agreement, all sectors of the economy will be expected to contribute to GHG abatement. Enteric methane is the major source of GHG emissions from dairy production systems (>70%), followed by nitrous oxide (13%) and methane (12%) from animal waste, with nitrogen (N)-fertiliser use contributing ~3.5% of total on-farm non-carbon dioxide equivalent (non-CO2e) emissions. Research on reducing methane emissions from dairy cattle has focussed on feeding dietary supplements (e.g. tannins, dietary oils and wheat), rumen modification (e.g. vaccine, inhibitors), breeding and animal management. Research on reducing nitrous oxide emissions has focussed on improving N fertiliser efficiency and reducing urinary N loss. Profitable options for significant abatement on farm are still limited, with the industry focusing instead on improving production efficiency, while reducing emission intensity (t CO2e/t product). Absolute emission reduction will become an imperative as the world moves towards carbon neutrality by 2050 and, thus, a priority for research. However, even with implementation of best-practice abatement, it is likely that some residual emissions will remain in the foreseeable future. The soil organic carbon content of dairy soils under well fertilised, high-rainfall or irrigated permanent pastures are already high, therefore limiting the potential for further soil carbon sequestration as an offset against these residual emissions. The Australasian dairy industry will, therefore, also need to consider how these residual emissions will be offset through carbon sequestration mainly in trees and, to a more limited extent, increasing soil organic carbon.


2012 ◽  
Vol 3 (2) ◽  
pp. 95-109 ◽  
Author(s):  
P. Winter ◽  
P. Pearce ◽  
K. Colquhoun

This paper describes research that investigated the contribution of nitrous oxide (N2O) emissions from wastewater treatment to the greenhouse gas emissions of a wastewater treatment plant (WWTP). The research provided several months of robust data from a large-scale WWTP serving a population equivalent of 284,000. N2O emissions were monitored online at the ventilation system of a covered activated sludge (AS) plant, therefore capturing the complete off-gas stream. This methodology eliminated errors incurred through sampling of small percentages of emission areas and allowed representative continuous measurements. Nitrogen load and dissolved oxygen (DO) were also monitored. To address seasonal variation, data were recorded in two extensive phases. In addition, three separate 24-hour surveys were conducted. Emissions of CO2, CH4 and N2O associated with treatment were calculated using the UK Water Industry Research carbon accounting workbook. This study measured N2O emissions from the AS process (nitrification and denitrification) equivalent to 17.5% of the annual GHG emissions (tonnes CO2e) from processes at the WWTP. The emissions were within the range of published N2O emissions. The diurnal profiles confirmed literature findings of a trend of increased N2O emissions when the DO decreased. The DO in the high rate zone of the aeration lanes should be kept above 1 mg l−1 to avoid favourable conditions for N2O emissions during nitrification.


Author(s):  
Safa Baccour ◽  
Jose Albiac ◽  
Taher Kahil

Climate change represents a serious threat to life in earth. Agriculture releases significant emissions of greenhouse gases (GHG), but also offers low-cost opportunities to mitigate GHG emissions. This paper assesses agricultural GHG emissions in Aragon, one important and representative region for agriculture in Spain. The Marginal Abatement Cost Curve (MACC) approach is used to analyze the abatement potential and cost-efficiency of mitigation measures under several scenarios, with and without taking into account the interaction among measures and their transaction costs. The assessment identifies the environmental and economic outcomes of different combinations of measures, including crop, livestock and forest measures. Some of these measures are win-win, with pollution abatement at negative costs to farmers. Moreover, we develop future mitigation scenarios for agriculture toward the year 2050. Results highlight the trade-offs and synergies between the economic and environmental outcomes of mitigation measures. The biophysical processes underlying mitigation efforts are assessed taking into account the significant effects of interactions between measures. Interactions reduce the abatement potential and worsen the cost-efficiency of measures. The inclusion of transaction costs provides a better ranking of measures and a more accurate estimation of implementation costs. The scenario analysis shows how the combinations of measures could reduce emissions by up to 75% and promote sustainable agriculture in the future.


2021 ◽  
Author(s):  
◽  
Amelie Goldberg

<p>Carbon footprints show the carbon impacts of food products. They are argued here to reflect these impacts more accurately than 'food miles'. New Zealand research has shown that our major primary sectors are more efficient in terms of carbon dioxide emissions than their British equivalents over the farming and shipping stages of the lifecycle. However, little research has examined other stages, such as road and rail freight and meat processing within New Zealand. Furthermore, the agro-food sector only has partial knowledge about its greenhouse gas  GHG) emissions from 'farm gate to plate' and is not yet fully prepared to implement GHG mitigation strategies. The aims of this study are to 1) calculate the carbon footprints of beef and lamb produced and consumed in New Zealand using a lifecycle approach (including all GHGs), and 2) evaluate, through key stakeholder interviews, the applicability of the carbon footprint concept to New Zealand for addressing consumer environmental concerns. The calculations show that the GHG footprints (all GHGs) of beef and lamb are comprised, for the most part, of on-farm methane and nitrous oxide emissions. Domestic and international freight contribute less than 5% to these footprints, and data from a case study of two meat processing plants suggest that meat processing emissions contributes even less than freight emissions. When leaving aside on-farm methane and nitrous oxide emissions, meat processing and freight contribute less than half to the carbon dioxide (CO2) footprints. Interviews conducted for this study show that key stakeholder attitudes to these issues are varied. Responses from government representatives centred on the need to support the agro-food sector in responding to foreign market demands; the response from industry was mixed but suggests that it is prepared to account for its GHG emissions, showing a preference for carbon footprints over food miles. Environmental NGOs warned that there are risks to New Zealand if it continues to rely on a 'clean green' image mostly due to its natural comparative advantage, and fails to account for its emissions.</p>


Sign in / Sign up

Export Citation Format

Share Document