scholarly journals Assessment of the optimal frequency of insecticide sprays required to manage fall armyworm (Spodoptera frugiperda J.E Smith) in maize (Zea mays L.) in northern Ghana

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Jerry A. Nboyine ◽  
Ebenezer Asamani ◽  
Lakpo K. Agboyi ◽  
Iddrisu Yahaya ◽  
Francis Kusi ◽  
...  

Abstract Background Insecticide use is an important component of integrated pest management strategies developed for fall armyworm (FAW), Spodoptera frugiperda J.E Smith, control in maize in many African countries. Here, the optimum number of synthetic insecticide and biopesticide applications needed to effectively manage FAW at a minimal cost in maize was studied. Materials and methods A 3 × 4 factorial experiment arranged in a split plot design was used. Insecticides [Neem seed oil (NSO), 3% Azadirachtin); Emastar 112 EC (emamectin benzoate 48 g/L + acetamiprid 64 g/L); Eradicoat (282 g/L Maltodextrin)] were on the main plots, while insecticide spraying regimes [untreated control, spraying once (at VE–V5 maize develoment stage), twice (at VE–V5 and V6–V12 stages), thrice (at VE–V5, V6–V12 and V12–VT stages), four times (at VE–V5, V6–V12, V12–VT and R1–R3 stages)] were on the sub-plots. Results The results showed that larval infestations were generally lower in Emastar 112 EC treated maize than in those sprayed with Eradicoat or NSO. Infestations were higher in the untreated control (no spray) but decreased with increases in number of spray applications in insecticide treated plots. Again, crop damage was low in Emastar 112 EC treated maize. This variable also decreased with an increase in the number of spray applications. Grain yield was significantly affected by the spraying regime only, with this variable being lowest in the untreated control. In both years, yields were at least 1.5-fold higher in maize sprayed twice, thrice or four times compared to the untreated control. Emastar 112 EC had the highest net economic benefits. A single spray of Emastar 112 EC at the VE–V5 maize development stage resulted in maximum profits, while two sprays (i.e., at VE–V5 and V6–V12 stages) were needed for Eradicoat and NSO. Conclusion Hence, synthetic insecticides and biopesticides require different frequency of spray applications for cost effective management of FAW in northern Ghana. These findings are potentially applicable in other sub-Saharan African countries where this pest is present.

2020 ◽  
Vol 49 (3) ◽  
pp. 645-650 ◽  
Author(s):  
Djima Koffi ◽  
Komi Agboka ◽  
Delanyo Kokouvi Adenka ◽  
Michael Osae ◽  
Agbeko Kodjo Tounou ◽  
...  

Abstract The fall armyworm Spodoptera frugiperda (J. E. Smith) invaded several West African countries in 2016 causing severe injury to maize plants and economic damage. This study assesses variations in the occurrence of this species in different Agro-Ecological Zones (AEZs) in Togo and Ghana during the 3 yr following its discovery. The surveys were conducted on 120 farms in Togo and 94 farms in Ghana by collecting larvae from 200 maize plants per hectare. Infestation levels were 68.46% in 2016, 55.82% in 2017, and 17.76% in 2018. The number of larvae recorded per hectare and infestation levels were higher in Togo than in Ghana. The lowest number of collected larvae and infestation levels of S. frugiperda were in 2018, compared to the other 2 yr. Larvae per hectare and the infestation level varied regionally inside the two countries. The southern part of Togo (AEZ five) contained higher numbers of larvae and higher infestation levels during the 2 yr following the invasion of the pest. We concluded that infestation levels of S. frugiperda are much lower in 2018 than the two previous years and it is therefore necessary to determine the factors that affect the population dynamics of S. frugiperda in the field, which is a perquisite for developing management interventions.


Author(s):  
Matthew W. Jordon ◽  
Talya D. Hackett ◽  
Fred Aboagye-Antwi ◽  
Vincent Y. Eziah ◽  
Owen T. Lewis

Abstract Insect crop pests are a major threat to food security in sub-Saharan Africa. Configuration of semi-natural habitat within agricultural landscapes has the potential to enhance biological pest control, helping to maintain yields whilst minimising the negative effects of pesticide use. Fall armyworm (Spodoptera frugiperda, J. E. Smith) is an increasingly important pest of maize in sub-Saharan Africa, with reports of yield loss between 12 and 45%. We investigated the patterns of fall armyworm leaf damage in maize crops in Ghana, and used pitfall traps and dummy caterpillars to assess the spatial distribution of potential fall armyworm predators. Crop damage from fall armyworm at our study sites increased significantly with distance from the field edge, by up to 4% per m. We found evidence that Araneae activity, richness and diversity correspondingly decreased with distance from semi-natural habitat, although Hymenoptera richness and diversity increased. Our preliminary findings suggest that modifying field configuration to increase the proximity of maize to semi-natural habitat may reduce fall armyworm damage and increase natural enemy activity within crops. Further research is required to determine the level of fall armyworm suppression achievable through natural enemies, and how effectively this could safeguard yields.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 68 ◽  
Author(s):  
Lakpo Koku Agboyi ◽  
Georg Goergen ◽  
Patrick Beseh ◽  
Samuel Adjei Mensah ◽  
Victor Attuquaye Clottey ◽  
...  

The fall armyworm, Spodoptera frugiperda, a moth originating from the American continent, has recently invaded most African countries, where it is seriously threatening food security as a pest of cereals. The current management methods rely heavily on the use of synthetic insecticides but there is a need for more sustainable control methods, including biological control. Surveys were conducted in two West African countries, Ghana and Benin, to determine the native parasitoid complex and assess parasitism rates of S. frugiperda. Samples of S. frugiperda eggs and larvae were collected in maize fields located in 56 and 90 localities of Ghana and Benin, respectively, from July 2018 to July 2019. Ten species were found parasitizing the pest, including two egg parasitoids, one egg–larval, five larval and two larval–pupal parasitoids. The two most abundant parasitoids in both countries were two Braconidae: the egg-larval parasitoid Chelonus bifoveolatus and the larval parasitoid Coccygidum luteum. Parasitism rates were determined in three Ghanaian regions and averages varied from 0% to 75% between sites and from 5% to 38% between regions. These data provide an important baseline for the development of various biological control options. The two egg parasitoids, Telenomus remus and Trichogramma sp. can be used in augmentative biological control and investigations should be conducted to assess how cultural practices can enhance the action of the main parasitoids, C. luteum and Ch. bifoveolatus, in the field. Understanding the parasitoid complex of S. frugiperda in Africa is also necessary before any development of classical biological controls involving the introduction of parasitoids from the Americas.


2020 ◽  
Vol 740 ◽  
pp. 140015 ◽  
Author(s):  
Justice A. Tambo ◽  
Monica K. Kansiime ◽  
Idah Mugambi ◽  
Ivan Rwomushana ◽  
Marc Kenis ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Djima Koffi ◽  
Rosina Kyerematen ◽  
Vincent Y Eziah ◽  
Yaa Oguabi Osei-Mensah ◽  
Kwame Afreh-Nuamah ◽  
...  

Abstract Spodoptera frugiperda was considered an insect pest only in the Americas until its first report in African countries in 2016. In this study, farmers and agricultural officials in Ghana were interviewed on their perceptions and knowledge of the pest, on infestation and maize yield variations across years, and on management practices. Farms were inspected to determine the infestation level of 100 plants per hectare. Interviews revealed that farmers were familiar with the larval stages of this pest and noticed that the pest occurred throughout the year, but populations of S. frugiperda increased only during cropping seasons. Infestation levels reported by farmers in surveys were much lower in 2018 (30.38%) than in 2017 (80.92%). Farm inspections confirmed that infestation levels were much lower in 2018 (20.90%) than 2017 (73.70%). The belt formed by Guinea Savannah, Transitional Zone, and Semi-Deciduous Forest Agro-Ecological Zones (AEZs) recorded the highest infestations while the lowest were observed from the Sudan Savannah and Tropical Rain Forest AEZs. Insecticides were the most commonly used tactic to manage populations of this new pest. Maize yields increased across Ghana between 2013 and 2015 from 1.52 to 1.73 t/ha, decreased between 2015 and 2017 to 1.55 t/ha, and increased to 1.69 t/ha in 2018. The impact of fall armyworm injury to maize production is discussed.


2019 ◽  
Vol 112 (4) ◽  
pp. 1838-1844 ◽  
Author(s):  
Carlos N Vassallo ◽  
Florencia Figueroa Bunge ◽  
Ana M Signorini ◽  
Pablo Valverde-Garcia ◽  
Dwain Rule ◽  
...  

AbstractMaize (Zea mays L.) is one of the most important and widely cultivated crops in Argentina. Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a common maize pest capable of causing significant yield losses and is most destructive in late-planted maize in subtropical regions, going through five to six generations per growing season. The Bacillus thuringiensis (Bt) trait Herculex I Insect Protection technology by Dow AgroSciences and Pioneer Hi-Bred (HX I, event DAS-Ø15Ø7-1), expressing Cry1F protein, was launched in the 2005–2006 season in Argentina and was widely adopted because of the high level of efficacy against S. frugiperda, as well as other pests such as Diatraea saccharalis (J.C. Fabricius). However, increased late-season plantings, limited adoption of refuge, and properties of S. frugiperda biology (high number of generations and migratory behavior) have led to high S. frugiperda exposure to Cry1F and resistance selection pressure. Field efficacy monitoring has been conducted throughout the main maize production areas in Argentina from 2009 to 2016. Laboratory monitoring has been conducted throughout the same areas from 2010 to 2015. Here, we describe changes in field efficacy of HX I and the results of laboratory-based susceptibility monitoring conducted using purified Cry1F protein. Increases in larval survival and crop damage were evident throughout the 2012–2016 period and spanned the majority of maize production areas in Argentina. Over the same period, random larval collections showed increasing survivorship on diet containing purified Cry1F protein. These field and laboratory studies confirmed that resistance to Cry1F has developed and is now widely distributed in S. frugiperda populations in Argentina.


2021 ◽  
Vol 20 (3) ◽  
pp. 783-791 ◽  
Author(s):  
Dan-dan ZHANG ◽  
Yu-tao XIAO ◽  
Peng-jun XU ◽  
Xian-ming YANG ◽  
Qiu-lin WU ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 298
Author(s):  
Ouorou Ganni Mariel Guera ◽  
Federico Castrejón-Ayala ◽  
Norma Robledo ◽  
Alfredo Jiménez-Pérez ◽  
Georgina Sánchez-Rivera ◽  
...  

Chemical control is the main method used to combat fall armyworm in maize crops. However, its indiscriminate use usually leads to a more complex scenario characterized by loss of its effectiveness due to the development of resistance of the insect pest, emergence of secondary pests, and reduction of the populations of natural enemies. For this reason, efforts to develop strategies for agroecological pest management such as Push–Pull are increasingly growing. In this context, the present study was carried out to evaluate field effectiveness of Push–Pull systems for S. frugiperda management in maize crops in Morelos, Mexico. In a randomized block experiment, the incidence and severity of S. frugiperda, the development and yield of maize were evaluated in nine Push–Pull systems and a maize monoculture. The Push–Pull systems presented incidence/severity values lower than those of the monoculture. Morphological development and maize yield in the latter were lower than those of most Push–Pull systems. Mombasa—D. ambrosioides, Mulato II—T. erecta, Mulato II—C. juncea, Tanzania—T. erecta and Tanzania—D. ambrosioides systems presented higher yields than those of monocultures.


Sign in / Sign up

Export Citation Format

Share Document