Recovering long wavelength of the velocity model using waveform inversion in the Laplace domain: Application to field data

2011 ◽  
Author(s):  
Henri Calandra ◽  
Christian Rivera ◽  
Changsoo Shin ◽  
Sukjoon Pyun ◽  
Youngseo Kim ◽  
...  
2013 ◽  
Vol 170 (12) ◽  
pp. 2075-2085 ◽  
Author(s):  
Eunjin Park ◽  
Wansoo Ha ◽  
Wookeen Chung ◽  
Changsoo Shin ◽  
Dong-Joo Min

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. R199-R206 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

The lack of the low-frequency information in field data prohibits the time- or frequency-domain waveform inversions from recovering large-scale background velocity models. On the other hand, Laplace-domain waveform inversion is less sensitive to the lack of the low frequencies than conventional inversions. In theory, frequency filtering of the seismic signal in the time domain is equivalent to a constant multiplication of the wavefield in the Laplace domain. Because the constant can be retrieved using the source estimation process, the frequency content of the seismic data does not affect the gradient direction of the Laplace-domain waveform inversion. We obtained inversion results of the frequency-filtered field data acquired in the Gulf of Mexico and two synthetic data sets obtained using a first-derivative Gaussian source wavelet and a single-frequency causal sine function. They demonstrated that Laplace-domain inversion yielded consistent results regardless of the frequency content within the seismic data.


Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. R167-R173 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

Laplace-domain inversions generate long-wavelength velocity models from synthetic and field data sets, unlike full-waveform inversions in the time or frequency domain. By examining the gradient directions of Laplace-domain inversions, we explain why they result in long-wavelength velocity models. The gradient direction of the inversion is calculated by multiplying the virtual source and the back-propagated wavefield. The virtual source has long-wavelength features because it is the product of the smooth forward-modeled wavefield and the partial derivative of the impedance matrix, which depends on the long-wavelength initial velocity used in the inversion. The back-propagated wavefield exhibits mild variations, except for near the receiver, in spite of the short-wavelength components in the residual. The smooth back-propagated wavefield results from the low-wavenumber pass-filtering effects of Laplace-domain Green’s function, which attenuates the high-wavenumber components of the residuals more rapidly than the low-wavenumber components. Accordingly, the gradient direction and the inversion results are smooth. Examples of inverting field data acquired in the Gulf of Mexico exhibit long-wavelength gradients and confirm the generation of long-wavelength velocity models by Laplace-domain inversion. The inversion of moving-average filtered data without short-wavelength features shows that the Laplace-domain inversion is not greatly affected by the high-wavenumber components in the field data.


Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 902-914 ◽  
Author(s):  
R. Gerhard Pratt ◽  
Richard M. Shipp

A crosshole experiment was carried out in a layered sedimentary environment in which a normal fault is known to cut through the section. Initial traveltime inversions produced stable but low‐resolution images from which the fault could be only vaguely inferred. To image the fault, wavefield inversion was used to produce a velocity model consistent with the detailed phase and amplitude of the data at a number of frequencies. Our wavefield inversion scheme uses a classical, descent‐type algorithm for decreasing the data misfit by iteratively computing the gradient of this misfit by repeated forward and backward propagations. Our propagator is a full‐wave equation, frequency‐domain, acoustic, finite‐difference method. The use of the frequency‐space domain yields computational advantages for multisource data and allows an easy incorporation of viscous effects. By running wavefield inversion on the field data, a quantitative velocity image was produced that yielded a significantly improved image of the fault (when compared with the original traveltime inversions). Because the original field data were noisy and contained a high degree of multiple scattering (from the layering of the sediments), the transmitted arrivals were selectively windowed to enhance the image. The sediments at the site were strongly attenuating; we therefore used a viscoacoustic model during the modeling and the inversion that correctly simulated the observed decrease in amplitude with increasing frequency and source‐receiver offset. Furthermore, since the traveltime inversion indicated a high degree of anisotropy at the site, a fixed, homogeneous level of anisotropy was used during the inversion. Tests at varying levels of anisotropy confirmed the improvement in image quality and in data fit when anisotropy was incorporated. The final image was verified by examining the distribution of the residuals in the frequency domain, by comparing time‐domain modeled wavefields with the observed data, and by direct comparison with borehole logs.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R37-R46 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

Full waveform inversion is a method used to recover subsurface parameters, and it requires heavy computational resources. We present a cyclic shot subsampling method to make the full waveform inversion efficient while maintaining the quality of the inversion results. The cyclic method subsamples the shots at a regular interval and changes the shot subset at each iteration step. Using this method, we can suppress the aliasing noise present in regular-interval subsampling. We compared the cyclic method with divide-and-conquer, random, and random-in-each-subgroup subsampling methods using the Laplace-domain full waveform inversion. We found examples of a 2D marine field data set from the Gulf of Mexico and a 3D synthetic salt velocity model. In the inversion examples using the subsampling methods, we could reduce the computation time and obtain results comparable to that without a subsampling technique. The cyclic method and two random subsampling methods yielded similar results; however, the cyclic method generated the best results, especially when the number of shot subsamples was small, as expected. We also examined the effect of subsample updating frequency. The updating frequency does not have a significant effect on the results when the number of subsamples is large. In contrast, frequent subsample updating becomes important when the number of subsamples is small. The random-in-each-subgroup scheme showed the best results if we did not update the subsamples frequently, while the cyclic method suffers from aliasing. The results suggested that the cyclic subsampling scheme can be an alternative to the random schemes and the distributed subsampling schemes with a frequently changing subset are better than lumped subsampling schemes.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R59-R80 ◽  
Author(s):  
Michael Warner ◽  
Andrew Ratcliffe ◽  
Tenice Nangoo ◽  
Joanna Morgan ◽  
Adrian Umpleby ◽  
...  

We have developed and implemented a robust and practical scheme for anisotropic 3D acoustic full-waveform inversion (FWI). We demonstrate this scheme on a field data set, applying it to a 4C ocean-bottom survey over the Tommeliten Alpha field in the North Sea. This shallow-water data set provides good azimuthal coverage to offsets of 7 km, with reduced coverage to a maximum offset of about 11 km. The reservoir lies at the crest of a high-velocity antiformal chalk section, overlain by about 3000 m of clastics within which a low-velocity gas cloud produces a seismic obscured area. We inverted only the hydrophone data, and we retained free-surface multiples and ghosts within the field data. We invert in six narrow frequency bands, in the range 3 to 6.5 Hz. At each iteration, we selected only a subset of sources, using a different subset at each iteration; this strategy is more efficient than inverting all the data every iteration. Our starting velocity model was obtained using standard PSDM model building including anisotropic reflection tomography, and contained epsilon values as high as 20%. The final FWI velocity model shows a network of shallow high-velocity channels that match similar features in the reflection data. Deeper in the section, the FWI velocity model reveals a sharper and more-intense low-velocity region associated with the gas cloud in which low-velocity fingers match the location of gas-filled faults visible in the reflection data. The resulting velocity model provides a better match to well logs, and better flattens common-image gathers, than does the starting model. Reverse-time migration, using the FWI velocity model, provides significant uplift to the migrated image, simplifying the planform of the reservoir section at depth. The workflows, inversion strategy, and algorithms that we have used have broad application to invert a wide-range of analogous data sets.


2012 ◽  
Vol 190 (1) ◽  
pp. 421-428 ◽  
Author(s):  
Wansoo Ha ◽  
Wookeen Chung ◽  
Eunjin Park ◽  
Changsoo Shin

Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. R31-R42 ◽  
Author(s):  
Changsoo Shin ◽  
Dong-Joo Min

Although waveform inversion has been studied extensively since its beginning [Formula: see text] ago, applications to seismic field data have been limited, and most of those applications have been for global-seismology- or engineering-seismology-scale problems, not for exploration-scale data. As an alternative to classical waveform inversion, we propose the use of a new, objective function constructed by taking the logarithm of wavefields, allowing consideration of three types of objective function, namely, amplitude only, phase only, or both. In our wave form inversion, we estimate the source signature as well as the velocity structure by including functions of amplitudes and phases of the source signature in the objective function. We compute the steepest-descent directions by using a matrix formalism derived from a frequency-domain, finite-element/finite-difference modeling technique. Our numerical algorithms are similar to those of reverse-time migration and waveform inversion based on the adjoint state of the wave equation. In order to demonstrate the practical applicability of our algorithm, we use a synthetic data set from the Marmousi model and seismic data collected from the Korean continental shelf. For noise-free synthetic data, the velocity structure produced by our inversion algorithm is closer to the true velocity structure than that obtained with conventional waveform inversion. When random noise is added, the inverted velocity model is also close to the true Marmousi model, but when frequencies below [Formula: see text] are removed from the data, the velocity structure is not as good as those for the noise-free and noisy data. For field data, we compare the time-domain synthetic seismograms generated for the velocity model inverted by our algorithm with real seismograms and find that the results show that our inversion algorithm reveals short-period features of the subsurface. Although we use wrapped phases in our examples, we still obtain reasonable results. We expect that if we were to use correctly unwrapped phases in the inversion algorithm, we would obtain better results.


2019 ◽  
Vol 220 (3) ◽  
pp. 2089-2104
Author(s):  
Òscar Calderón Agudo ◽  
Nuno Vieira da Silva ◽  
George Stronge ◽  
Michael Warner

SUMMARY The potential of full-waveform inversion (FWI) to recover high-resolution velocity models of the subsurface has been demonstrated in the last decades with its application to field data. But in certain geological scenarios, conventional FWI using the acoustic wave equation fails in recovering accurate models due to the presence of strong elastic effects, as the acoustic wave equation only accounts for compressional waves. This becomes more critical when dealing with land data sets, in which elastic effects are generated at the source and recorded directly by the receivers. In marine settings, in which sources and receivers are typically within the water layer, elastic effects are weaker but can be observed most easily as double mode conversions and through their effect on P-wave amplitudes. Ignoring these elastic effects can have a detrimental impact on the accuracy of the recovered velocity models, even in marine data sets. Ideally, the elastic wave equation should be used to model wave propagation, and FWI should aim to recover anisotropic models of velocity for P waves (vp) and S waves (vs). However, routine three-dimensional elastic FWI is still commercially impractical due to the elevated computational cost of modelling elastic wave propagation in regions with low S-wave velocity near the seabed. Moreover, elastic FWI using local optimization methods suffers from cross-talk between different inverted parameters. This generally leads to incorrect estimation of subsurface models, requiring an estimate of vp/vs that is rarely known beforehand. Here we illustrate how neglecting elasticity during FWI for a marine field data set that contains especially strong elastic heterogeneities can lead to an incorrect estimation of the P-wave velocity model. We then demonstrate a practical approach to mitigate elastic effects in 3-D yielding improved estimates, consisting of using a global inversion algorithm to estimate a model of vp/vs, employing matching filters to remove elastic effects from the field data, and performing acoustic FWI of the resulting data set. The quality of the recovered models is assessed by exploring the continuity of the events in the migrated sections and the fit of the latter with the recovered velocity model.


2019 ◽  
Vol 38 (3) ◽  
pp. 193-196 ◽  
Author(s):  
Jaime Ramos-Martínez ◽  
Lingyun Qiu ◽  
Alejandro A. Valenciano ◽  
Xiaoyan Jiang ◽  
Nizar Chemingui

Full-waveform inversion (FWI) has become the tool of choice for building high-resolution velocity models. Its success depends on producing seamless updates of the short- and long-wavelength model features while avoiding cycle skipping. Classic FWI implementations use the L2 norm to measure the data misfit in combination with a gradient computed by a crosscorrelation imaging condition of the source and residual wavefields. The algorithm risks converging to an inaccurate result if the data lack low frequencies and/or the initial model is far from the true one. Additionally, the model updates may display a reflectivity imprint before the long-wavelength features of the model are fully recovered. We propose a new solution to this fundamental challenge by combining the quadratic form of the Wasserstein distance (W2 norm) for measuring the data misfit with a robust implementation of a velocity gradient. The W2 norm reduces the risk of cycle skipping, whereas the velocity gradient effectively eliminates the reflectivity imprint and emphasizes the long-wavelength model updates. We illustrate the performance of the new solution on a field survey acquired offshore Brazil. We demonstrate how FWI successfully updates the earth model and resolves a high-velocity carbonate section missing from the initial velocity model.


Sign in / Sign up

Export Citation Format

Share Document