Wave-equation diffraction imaging using pseudo dip-angle gather

Geophysics ◽  
2022 ◽  
pp. 1-45
Author(s):  
Lu Liu ◽  
Yue Ma ◽  
Yang Zhao ◽  
Yi Luo

Diffraction images can directly indicate local heterogeneities such as faults, fracture zones, and erosional surfaces that are of high interest in seismic interpretation and unconventional reservoir development. We propose a new tool called pseudo dip-angle gather (PDAG) for imaging diffractors using the wave equation. PDAG has significantly lower computational cost compared with the classical dip-angle gather (DAG) due to using plane-wave gathers, a fast local Radon transform algorithm, and one-side decomposition assumption. Pseudo dip angle is measured from the vertical axis to the bisector of the plane-wave surface incident angle and scattered wave-propagation angle. PDAG is generated by choosing the zero lag of the correlation of the plane-wave source wavefields and the decomposed receiver wavefields. It reveals similar diffraction and reflection patterns to DAG, i.e. diffractions spreading as a flat event and reflections focused at a spectacular angle, while they may have dissimilar coverage for diffraction and different focused locations for reflection compared with that of DAG. A windowed median filter is then applied to each PDAG for extracting the diffraction energy and suppressing the focused reflection energy. Besides, the stacked PDAG can be used to evaluate the migration accuracy by measuring the flatness of the image gathers. Numerical tests on both synthetic and field data sets demonstrate that our method can efficiently produce accurate results for diffraction images.

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. S459-S468 ◽  
Author(s):  
Lu Liu ◽  
Etienne Vincent ◽  
Xu Ji ◽  
Fuhao Qin ◽  
Yi Luo

We have developed a fast and practical wave-equation-based migration method to image subsurface diffractors. The method is composed of three steps in our implementation. First, it decomposes extrapolated receiver wavefields at every imaging point into local plane waves by a linear Radon transform; the transform is realized by a novel computationally efficient recursive algorithm. Second, the decomposed plane waves are zero lag-correlated with the incident source wavefields, where the incident angles are computed via the structure tensor approach. The resulting prestack images are binned into dip-angle gathers according to the directions of the decomposed plane waves and the calculated incident angles. Third, a windowed median filter is applied to the dip-angle gathers to suppress the focused reflection energy, and it produces the desired diffraction images. This method is tested on synthetic and field data. The results demonstrate that it is resistant to random noise, computationally efficient, and applicable to field data in practice. The results also indicate that the diffraction images are able to provide important discontinuous geologic features, such as scattering and faulting zones, and thus are helpful for seismic interpretation.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. S327-S340 ◽  
Author(s):  
Bowen Guo ◽  
Gerard T. Schuster

Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain, or time-lag common-image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, we have developed a WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce computational cost and memory storage because they are directly calculated from prestack plane-wave migration and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic data sets and a field data set validate the efficiency and effectiveness of this method.


2012 ◽  
Vol 2 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Satinderjit Singh

Median filtering is a commonly used technique in image processing. The main problem of the median filter is its high computational cost (for sorting N pixels, the temporal complexity is O(N·log N), even with the most efficient sorting algorithms). When the median filter must be carried out in real time, the software implementation in general-purpose processorsdoes not usually give good results. This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with only about 9 comparisons per pixel using spatial coherence between neighboring filter computations. The basic algorithm calculates two medians in one step and reuses sorted slices of three vertical neighboring pixels. An extension of this algorithm for 2D spatial coherence is also examined, which calculates four medians per step.


2017 ◽  
Author(s):  
Yujin Liu ◽  
Yan Wu ◽  
Xiongwen Wang ◽  
Tong Fei ◽  
Yi Luo
Keyword(s):  

Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S549-S556 ◽  
Author(s):  
Xiongwen Wang ◽  
Xu Ji ◽  
Hongwei Liu ◽  
Yi Luo

Plane-wave reverse time migration (RTM) could potentially provide quick subsurface images by migrating fewer plane-wave gathers than shot gathers. However, the time delay between the first and the last excitation sources in the plane-wave source largely increases the computation cost and decreases the practical value of this method. Although the time delay problem is easily overcome by periodical phase shifting in the frequency domain for one-way wave-equation migration, it remains a challenge for time-domain RTM. We have developed a novel method, referred as to fast plane-wave RTM (FP-RTM), to eliminate unnecessary computation burden and significantly reduce the computational cost. In the proposed FP-RTM, we assume that the Green’s function has finite-length support; thus, the plane-wave source function and its responding data can be wrapped periodically in the time domain. The wrapping length is the assumed total duration length of Green’s function. We also determine that only two period plane-wave source and data after the wrapping process are required for generating the outcome with adequate accuracy. Although the computation time for one plane-wave gather is twice as long as a normal shot gather migration, a large amount of computation cost is saved because the total number of plane-wave gathers to be migrated is usually much less than the total number of shot gathers. Our FP-RTM can be used to rapidly generate RTM images and plane-wave domain common-image gathers for velocity model building. The synthetic and field data examples are evaluated to validate the efficiency and accuracy of our method.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S317-S331 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zhengwei Li ◽  
Linong Liu ◽  
Jin Wang ◽  
Jincheng Xu

We have improved the so-called deabsorption prestack time migration (PSTM) by introducing a dip-angle domain stationary-phase implementation. Deabsorption PSTM compensates absorption and dispersion via an actual wave propagation path using effective [Formula: see text] parameters that are obtained during migration. However, noises induced by the compensation degrade the resolution gained and deabsorption PSTM requires more computational effort than conventional PSTM. Our stationary-phase implementation improves deabsorption PSTM through the determination of an optimal migration aperture based on an estimate of the Fresnel zone. This significantly attenuates the noises and reduces the computational cost of 3D deabsorption PSTM. We have estimated the 2D Fresnel zone in terms of two dip angles through building a pair of 1D migrated dip-angle gathers using PSTM. Our stationary-phase QPSTM (deabsorption PSTM) was implemented as a two-stage process. First, we used conventional PSTM to obtain the Fresnel zones. Then, we performed deabsorption PSTM with the Fresnel-zone-based optimized migration aperture. We applied stationary-phase QPSTM to a 3D field data. Comparison with synthetic seismogram generated from well log data validates the resolution enhancements.


Sign in / Sign up

Export Citation Format

Share Document