Sea bottom characteristics and geochemistry of oil and gas seeps in the Gulf of Mexico

2021 ◽  
pp. 1-60
Author(s):  
John Decker ◽  
Philip Teas ◽  
Daniel Orange ◽  
Bernie B. Bernard

From 2015 to 2018, TGS conducted a comprehensive multiclient oil and gas seep hunting survey in the Gulf of Mexico. The basis for identifying seeps on the sea bottom was a high-resolution Multi-Beam Echo Sounder survey, mapping approximately 880,000 km2 of the sea bottom deeper than 750 m water depth, at a bathymetric resolution of 15 m and a backscatter resolution of 5 m. We have identified more than 5000 potential oil and/or gas seeps, and of those, we cored approximately 1500 for hydrocarbon geochemical analysis. The sea bottom features best related to hydrocarbon seepage in the GoM are high backscatter circular features with or without bathymetric expression, high backscatter features with “flow” appearance, mud volcanoes, pock marks, brine pools, “popcorn” texture, faults, and anticlinal crests. We also tracked gas plumes in the water column back to the sea bottom to provide an additional criterion for hydrocarbon seepage. Cores from sea bottom targets recovered liquid oil, tar, and gas hydrates. Oil extract and gas analyses of samples from most target types produced values substantially higher than background in oil and gas.

2021 ◽  
pp. M57-2020-20
Author(s):  
E. Henriksen ◽  
D. Ktenas ◽  
J. K. Nielsen

AbstractThe Finnmark Platform Composite Tectono-Sedimentary Element (CTSE), located in the southern Barents Sea, is a northward-dipping monoclinal structural unit. It covers most of the southern Norwegian Barents Sea where it borders the Norwegian Mainland. Except for the different age of basement, the CTSE extends eastwards into the Kola Monocline on the Russian part of the Barents Sea.The general water depth varies between 200-350 m, and the sea bottom is influenced by Plio-Pleistocene glaciations. A high frequency of scour marks and deposition of moraine materials exists on the platform areas. Successively older strata sub-crop below the Upper Regional Unconformity (URU, which was) formed by several glacial periods.Basement rocks of Neoproterozoic age are heavily affected by the Caledonian Orogeny, and previously by the Timanide tectonic compression in the easternmost part of the Finnmark Platform CTSE.Depth to crystalline basement varies considerably and is estimated to be from 4-5 to 10 km. Following the Caledonian orogenesis, the Finnmark Platform was affected by Lower to Middle Carboniferous rifting, sediment input from the Uralian Orogen in the east, the Upper Jurassic / Lower Cretaceous rift phase and the Late Plio-Pleistocene isostatic uplift.A total of 8 exploration wells drilled different targets on the platform. Two minor discoveries have been made proving presence of both oil and gas and potential sandstone reservoirs of good quality identified in the Visean, Induan, Anisian and Carnian intervals. In addition, thick sequences of Perm-Carboniferous carbonates and spiculitic chert are proven in the eastern Platform area. The deep reservoirs are believed to be charged from Paleozoic sources. A western extension of the Domanik source rocks well documented in the Timan-Pechora Basin may exist towards the eastern part of the Finnmark Platform. In the westernmost part, charge from juxtaposed down-faulted basins may be possible.


2018 ◽  
Author(s):  
Rais Khisamov ◽  
Natalya Skibitskaya ◽  
Kazimir Kovalenko ◽  
Venera Bazarevskaya ◽  
Nikita Samokhvalov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document