Specific surface area: A reliable predictor of creep and stress relaxation in gas shales

2021 ◽  
Vol 40 (11) ◽  
pp. 815-822
Author(s):  
Partha Pratim Mandal ◽  
Joel Sarout ◽  
Reza Rezaee

In recent years, short-term creep parameters determined in the laboratory from cylindrical gas shale samples subjected to triaxial (in-situ) stress conditions have been used successfully to infer long-term deformation and stress relaxation at the reservoir scale across geologic time scales. Due to the viscoelastic formalism, both the laboratory creep response and field-scale stress relaxation can be modeled with power law functions of time involving the elastic compliance of the shale B, the time-dependence exponent n, and the amount of total strain ∊. Gas shales often exhibit a high specific surface area associated with their high content in clay minerals and/or total organic carbon (TOC). The low-pressure nitrogen adsorption technique can be used advantageously to estimate specific surface area (SN2); i.e., it is a relatively fast and cost-effective measurement conducted on powdered samples of shale material. A robust global empirical correlation between gas shale creep parameters and SN2 emerges from the analysis of laboratory data collected from multiple gas shale formations in Australia (the prospective Goldwyer Formation) and the United States (Barnett, Haynesville, and Eagle Ford formations), and spanning a broad range of clay content, organic matter, maturity, and porosity values. This data set also shows that the summed fractions of clay minerals, TOC, and porosity, the so-called weak phase fraction, correlates nearly as well with primary creep parameters. The weak phase fraction can also be estimated from faster and more cost-effective measurements or from well logs. To evaluate its predictive capacity, the key correlation between SN2 and creep parameters is used in a case study to predict the magnitude of present-day least principal stress Shmin across six depth intervals/lithologic layers in a prolific unconventional shale formation in the northeastern United States. Several Shmin measurements are available for verification, and our approach successfully captures the observed layered variation of stress with depth.

Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840016 ◽  
Author(s):  
JUN LIU ◽  
YANBIN YAO ◽  
DAMENG LIU ◽  
YIDONG CAI ◽  
JIANCHAO CAI

Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel–Halsey–Hill (FHH) model with N[Formula: see text] adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N[Formula: see text] adsorption–desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions ([Formula: see text] and [Formula: see text] were obtained at [Formula: see text] of 0–0.5 and 0.5–1. The dimension [Formula: see text] is commonly greater than [Formula: see text], suggesting that larger pores (diameter [Formula: see text][Formula: see text]nm) have more complex structures than small pores (diameter [Formula: see text][Formula: see text]nm). The fractal dimensions (both [Formula: see text] and [Formula: see text]) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension [Formula: see text] is correlative to the TOC content and permeability of marine shale at a similar degree with dimension [Formula: see text], while the dimension [Formula: see text] is more sensitive to those of continental shale than dimension [Formula: see text]. Compared with dimension [Formula: see text], for two shales, dimension [Formula: see text] is better associated with the content of clay minerals but has worse correlations with the specific surface area and average pore diameter.


2020 ◽  
Vol 17 (6) ◽  
pp. 1512-1526
Author(s):  
Xiao-Guang Yang ◽  
Shao-Bin Guo

AbstractThe evolution of shale reservoirs is mainly related to two functions: mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect. Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale, and X-ray diffraction (XRD), CO2 adsorption, N2 adsorption and high-pressure mercury injection (MIP) were then used to characterize shale diagenesis and porosity. Moreover, simulations of mechanical compaction adhering to mathematical models were performed, and a shale compaction model was proposed considering clay content and kaolinite proportions. The advantage of this model is that the change in shale compressibility, which is caused by the transformation of clay minerals during thermal evolution, may be considered. The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction. Such interactions may then express the pore evolution of shale in actual conditions of formation. Accordingly, the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content, proving that other clay minerals such as illite–smectite mixed layers (I/S) and illite are conducive to the development of pores. Shales possessing a high clay mineral content have a higher porosity in shallow layers (< 3500 m) and a lower porosity in deep layers (> 3500 m). Both the amount and location of the increase in porosity differ at different geothermal gradients. High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro. The pore evolution of the marine-continental transitional shale is divided into five stages. Stage 2 possesses an Ro of 1.0%–1.6% and has high porosity along with a high specific surface area. Stage 3 has an Ro of 1.6%–2.0% and contains a higher porosity with a low specific surface area. Finally, Stage 4 has an Ro of 2.0%–2.9% with a low porosity and high specific surface area.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Zhongbao Liu ◽  
Haikuan Nie ◽  
Xinping Liang ◽  
Qianwen Li ◽  
...  

The lacustrine shale in the Dongyuemiao Member of the Fuling area, Sichuan Basin, is widely distributed and has huge shale oil resource potential. It is one of the important replacement areas for shale oil exploration in China. To investigate the key shale oil evaluation well, Well FY10, in the Fuling area, X-ray diffraction (XRD) mineral analysis, Rock-Eval, argon ion polishing-scanning electron microscope (SEM), Mercury injection capillary pressure (MICP), and low pressure nitrogen adsorption were launched to determine the heterogeneity of the pore system in the lacustrine shale of the Dongyuemiao Member. The mineral composition exhibits a high degree of heterogeneity, and the shale can be divided into two main lithofacies: argillaceous shale and mixed shale. The porosity ranges from 2.95 to 8.43%, and the permeability ranges from 0.05 to 1.07 × 10−3 μm2. The physical properties of mixed shale are obviously better than those of argillaceous shale. Inorganic mineral pores, such as linear pores between clay minerals and calcite dissolution pores, are mainly developed, while a small amount of organic pores can be observed. The average total pore volume (Vp) is 0.038 ml/g with an average specific surface area of 5.38 m2/g. Mesopores provide the main Vp (average 61.72%), and micropores provide mostly specific surface area. TOC imposes a strong controlling effect on the development of micropores. Clay minerals are the main contributors to mesopores and macropores. The organic-inorganic interaction during the process of diagenesis and hydrocarbon generation controls the formation of shale pore systems.


2021 ◽  
Author(s):  
Peter Lehmann ◽  
Ben Leshchinsky ◽  
Surya Gupta ◽  
Ben Mirus ◽  
Samuel Bickel ◽  
...  

&lt;p&gt;Clay minerals dominate the soil colloidal fraction and often carry the largest specific surface area &amp;#8211; a property that controls various soil hydraulic and mechanical properties (SHMPs; e.g. water retention, permeability, and internal friction). Differences in microscale structure among clay mineral types in tropical and temperate regions affect the specific surface area and result in higher permeability and internal friction angle values for tropical soils with inactive kaolinite clay minerals. Presently, the soil clay size fraction used to parameterize SHMPs with pedotransfer functions (PTFs) ignores clay mineral type, leading to inconsistent parameter representation. In this study, we present new PTFs informed by clay minerals, enabling enhanced estimation of friction angle and saturated hydraulic conductivity. To capture higher conductivity and lower air entry values in tropical soils, we developed a hierarchical packing model and validated this new PTF approach using literature data from various tropical regions. We leveraged recent global maps of clay minerals to demonstrate that a strong climatic and spatial segregation of active and inactive clays enable spatially resolved consideration of clay mineral type in SHMP estimation. We applied these clay-informed PTFs to improve SHMP representation regionally with implications for a wide range of hydrological and geomechanical Earth surface processes.&lt;/p&gt;


2006 ◽  
Vol 54 (1) ◽  
pp. 62-66 ◽  
Author(s):  
A. Umran Dogan ◽  
Meral Dogan ◽  
Muserref Onal ◽  
Yuksel Sarikaya ◽  
Aktham Aburub ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lars Dörner ◽  
Claudia Cancellieri ◽  
Bastian Rheingans ◽  
Marc Walter ◽  
Ralf Kägi ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3772 ◽  
Author(s):  
Magdalena Andrunik ◽  
Tomasz Bajda

Surfactant-modified clay minerals are known for their good sorption properties of both organic and inorganic compounds from aqueous solutions. However, the current knowledge regarding the effect of both cationic and nonionic surfactants on the properties of bentonite is still insufficient. Bentonite, with montmorillonite as the base clay, was modified with hexadecethyltrimethylammonium bromide (a cationic surfactant) in the amount of 1.0 cation exchange capacity (CEC) of bentonite and varying concentrations of t-octylphenoxypolyethoxyethanol (Triton X-100, a nonionic surfactant). We aimed to improve the understanding of the effect of nonionic and cationic surfactants on clay minerals. The modified bentonites were characterized by X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TG/DTA), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (SEM) and specific surface area and pore volume (BET). According to our results, the presence of a cationic surfactant significantly increased the amount of the adsorbed nonionic surfactant. Moreover, an increase in the concentration of nonionic surfactants is also associated with an increase in the effectiveness of the modification process. Our results indicate that the amount of nonionic surfactant used has a significant effect on the properties of the obtained hybrid material. Modification of bentonite with a nonionic surfactant did not cause an expansion of the interlayer space of smectite, regardless of the presence of a cationic surfactant. The modification process was found to significantly decrease the specific surface area of bentonite. Improvement of hydrophobic properties and thermal stability was also observed.


2020 ◽  
Vol 150 ◽  
pp. 02008
Author(s):  
Khadija Bouiahya ◽  
A. Oulguidoum ◽  
Abdelaziz Laghzizil

This study develops cost-effective adsorbents for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-Chlorophenol (2-CPh), and 2-Nitrophenol (2-NPh). Therefore, Alumina-Hydroxyapatite composites were prepared from natural phosphate in the presence of Al3+ ions characterized by various techniques and then the supplementary active sites on their surface may make a better contribution to the phenols remediation. It was concluded that the specific surface area, surface charge and Al content were very suitable for the more adsorptive removal. Results show that the 2-chlorophenol is the more affinity versus hydroxyapatite and its formed composites compared to 2-NPh and Ph in order 2-CPh>2-NPh>Ph.


Sign in / Sign up

Export Citation Format

Share Document