Anti-PITPNM3 small molecular compounds reverse breast cancer metastasis by targeting PITPNM3.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15005-e15005
Author(s):  
Chang Gong ◽  
Zihao Liu ◽  
Qun Lin ◽  
Yu Shi ◽  
Qing Luo ◽  
...  

e15005 Background: Recent studies highlight the fundamental roles of PITPNM3 in breast cancer metastasis. PITPNM3 is identified as the functional receptor of CCL18 and promotes breast cancer cell invasion and metastasis by binding with CCL18. Since anti-CCL18 neutralized antibodies shows medium binding affinity which restricts their clinical application, small molecular inhibitors targeting PITPNM3 are needed to be further investigated. Therefore, we identified several first in class small molecular inhibitors potentially targeting PITPNM3 and can inhibit breast cancer metastasis conducted by PITPNM3 activation. Methods: We performed computer-assisted drug design by constructing PITPNM3 homology model, characterizing potential binding pockets and docking preselected high diversity structured small molecule compounds into the static PITPNM3 model. Top 100 small molecules in silico scores were selected and screened through basic experiments. After screening, the anti-metastasis effects of selected compounds were tested through transwell migration and invasion assay. Immunofluorescence and qPCR were applied to confirm the expression of vimentin and CDH1. Western blot were used to clarify the inhibition effects of selected compounds on PITPNM3 signaling pathways. Results: By using homology remodeling, we successfully constructed the PITPNM3(680-920aa) protein model. The PITPNM3(680-920aa) domain is responsible for interacting with PYK2 and phosphorylating PYK2. The phosphorylation of PYK2 conducted by PITPNM3 signaling pathway will lead to metastasis and epithelial-mesenchymal transition (EMT) of breast cancer cells. We then characterized the potential binding pockets of this static model and a druggable site was founded. More than 50K molecules with high diversity were docked into this druggable site and scored through their docking performance. Finally, top 100 scored small molecules were selected. In addition, through 1 rounds of toxicity screening, 1 round of transwell migration assay screening and 1 round of transwell invasion assay screening, 4 small molecules with higher bioactivity is identified and 1 compound with the highest bioactivity as well as docking performance among 50K small molecules is chose. This compound can inhibit CCL18 treatment as well as tumor associated macrophage co-culture mediated migration and invasion. Besides, it can also inhibit the phophorylation of PYK2 and Src without inhibition the expression of PITPNM3. Conclusions: Our findings identify the first-in-class anti-PITPNM3 small molecule inhibitors. These compounds can inhibit PITPNM3 signaling pathway and reverse breast cancer metastasis.

2021 ◽  
Author(s):  
Heng Xiao ◽  
Jing Long ◽  
Xiang Chen ◽  
Mi-Duo Tan

Abstract Background: Breast cancer is a commonplace carcinoma in females. Recurrence and metastasis are the main problems affecting the survival rate of patients. The fundamental reason is the lack of understanding of the mechanism of breast cancer metastasis. This study aims to deliberate on the efficaciousness of Nuclear protein 1 (NUPR1)-mediated autophagy on breast cancer metastasis.Methods: The proliferation, migration and invasion ability of breast cancer cells were appraised by CCK-8, wound healing, and colony formation, as well as transwell assay. The relationship between NUPR1 and Translocation factor E3 (TFE3) was appraised by qPCR, western blot and ChIP. Migration-invasion-related proteins and autophagy-related proteins were appraised by western blot. The effects of NUPR1 on malignancy formation and metastasis were studied in vivo.Results: NUPR1 was upregulated in breast cancer cells and tissues. NUPR1 knockdown restrained the proliferation, migration and invasion of ZR-75-30 cells. Moreover, NUPR1 knockdown restrained malignancy formation and metastasis in vivo. Mechanically, NUPR1 promoted autophagy through activation of TFE3 transcription, thereby regulating the process of breast cancer metastasis.Conclusion: This paper elucidates the molecular mechanism of NUPR1 promoting breast cancer metastasis by activating autophagy through TFE3 signaling pathway, which provided biological basis for intervention of blocking distant metastasis.


2021 ◽  
Vol 134 (8) ◽  
Author(s):  
Aleena K. S. Arakaki ◽  
Wen-An Pan ◽  
Helen Wedegaertner ◽  
Ivette Roca-Mercado ◽  
Logan Chinn ◽  
...  

ABSTRACT The α-arrestin domain containing protein 3 (ARRDC3) is a tumor suppressor in triple-negative breast carcinoma (TNBC), a highly metastatic subtype of breast cancer that lacks targeted therapies. Thus, understanding the mechanisms and targets of ARRDC3 in TNBC is important. ARRDC3 regulates trafficking of protease-activated receptor 1 (PAR1, also known as F2R), a G-protein-coupled receptor (GPCR) implicated in breast cancer metastasis. Loss of ARRDC3 causes overexpression of PAR1 and aberrant signaling. Moreover, dysregulation of GPCR-induced Hippo signaling is associated with breast cancer progression. However, the mechanisms responsible for Hippo dysregulation remain unknown. Here, we report that the Hippo pathway transcriptional co-activator TAZ (also known as WWTR1) is the major effector of GPCR signaling and is required for TNBC migration and invasion. Additionally, ARRDC3 suppresses PAR1-induced Hippo signaling via sequestration of TAZ, which occurs independently of ARRDC3-regulated PAR1 trafficking. The ARRDC3 C-terminal PPXY motifs and TAZ WW domain are crucial for this interaction and are required for suppression of TNBC migration and lung metastasis in vivo. These studies are the first to demonstrate a role for ARRDC3 in regulating GPCR-induced TAZ activity in TNBC and reveal multi-faceted tumor suppressor functions of ARRDC3. This article has an associated First Person interview with the first author of the paper.


2021 ◽  
Vol 11 ◽  
Author(s):  
Madeleine Birgersson ◽  
Mengna Chi ◽  
Chrissy Miller ◽  
Joshua S. Brzozowski ◽  
Jeffrey Brown ◽  
...  

Brain and Acute Leukemia, Cytoplasmic (BAALC) is a protein that controls leukemia cell proliferation, differentiation, and survival and is overexpressed in several cancer types. The gene is located in the chromosomal region 8q22.3, an area commonly amplified in breast cancer and associated with poor prognosis. However, the expression and potential role of BAALC in breast cancer has not widely been examined. This study investigates BAALC expression in human breast cancers with the aim of determining if it plays a role in the pathogenesis of the disease. BAALC protein expression was examined by immunohistochemistry in breast cancer, and matched lymph node and normal breast tissue samples. The effect of gene expression on overall survival (OS), disease-free and distant metastasis free survival (DMFS) was assessed in silico using the Kaplan-Meier Plotter (n=3,935), the TCGA invasive breast carcinoma (n=960) and GOBO (n=821) data sets. Functional effects of BAALC expression on breast cancer proliferation, migration and invasion were determined in vitro. We demonstrate herein that BAALC expression is progressively increased in primary and breast cancer metastases when compared to normal breast tissue. Increased BAALC mRNA is associated with a reduction in DMFS and disease-free survival, but not OS, in breast cancer patients, even when corrected for tumor grade. We show that overexpression of BAALC in MCF-7 breast cancer cells increases the proliferation, anchorage-independent growth, invasion, and migration capacity of these cells. Conversely, siRNA knockdown of BAALC expression in Hs578T breast cancer cells decreases proliferation, invasion and migration. We identify that this BAALC associated migration and invasion is mediated by focal adhesion kinase (FAK)-dependent signaling and is accompanied by an increase in matrix metalloproteinase (MMP)-9 but not MMP-2 activity in vitro. Our data demonstrate a novel function for BAALC in the control of breast cancer metastasis, offering a potential target for the generation of anti-cancer drugs to prevent breast cancer metastasis.


2020 ◽  
Vol 17 (2) ◽  
pp. 148-158 ◽  
Author(s):  
Xi Xiaoxia ◽  
Sun Jing ◽  
Xi Dongbin ◽  
Tian Yonggang ◽  
Zhang Jingke ◽  
...  

Background: Realgar, a traditional Chinese medicine, has shown antitumor efficacy in several tumor types. We previously showed that realgar nanoparticles (nano-realgar) had significant antileukemia, anti-lung cancer and anti-liver cancer effects. In addition, the anti-tumor effects of nanorealgar were significantly better than those of ordinary realgar. Objective: To explore the inhibitory effects and molecular mechanisms of nano-realgar on the migration, invasion and metastasis of mouse breast cancer cells. Methods: Wound-healing migration assays and Transwell invasion assays were carried out to determine the effects of nano-realgar on breast cancer cell (4T1) migration and invasion. The expression levels of matrix metalloproteinase (MMP)-2 and -9 were measured by Western blot. A murine breast cancer metastasis model was established, administered nano-realgar for 32 days and monitored for tumor growth and metastasis by an in vivo optical imaging system. Finally, living imaging and hematoxylin and eosin (HE) staining were used to measure the morphology and pathology of lung and liver cancer cell metastases, respectively. Angiogenesis was assessed by CD34 immunohistochemistry. Results: Nano-realgar significantly inhibited the migration and invasion of breast cancer 4T1 cells and the expression of MMP-2 and -9. Meanwhile, nano-realgar effectively suppressed the abilities of tumor growth, metastasis and angiogenesis in the murine breast cancer metastasis model in a time- and dosedependent manner. Conclusion: Nano-realgar significantly inhibited migration and invasion of mouse breast cancer cells in vitro as well as pulmonary and hepatic metastasis in vivo, which may be closely correlated with the downexpression of MMP-2 and -9 and suppression of tumor neovascularization.


2017 ◽  
Vol 114 (3) ◽  
pp. 580-585 ◽  
Author(s):  
Peiwen Chen ◽  
Hao Zuo ◽  
Hu Xiong ◽  
Matthew J. Kolar ◽  
Qian Chu ◽  
...  

Macrophages are prominent immune cells in the tumor microenvironment that exert potent effects on cancer metastasis. However, the signals and receivers for the tumor–macrophage communication remain enigmatic. Here, we show that G protein-coupled receptor 132 (Gpr132) functions as a key macrophage sensor of the rising lactate in the acidic tumor milieu to mediate the reciprocal interaction between cancer cells and macrophages during breast cancer metastasis. Lactate activates macrophage Gpr132 to promote the alternatively activated macrophage (M2)-like phenotype, which, in turn, facilitates cancer cell adhesion, migration, and invasion. Consequently, Gpr132 deletion reduces M2 macrophages and impedes breast cancer lung metastasis in mice. Clinically, Gpr132 expression positively correlates with M2 macrophages, metastasis, and poor prognosis in patients with breast cancer. These findings uncover the lactate-Gpr132 axis as a driver of breast cancer metastasis by stimulating tumor–macrophage interplay, and reveal potential new therapeutic targets for breast cancer treatment.


2021 ◽  
Author(s):  
Xu Zhang ◽  
Xin-Yuan Dai ◽  
Jia-Yi Qian ◽  
Feng Xu ◽  
Zhang-Wei Wang ◽  
...  

Abstract Background As a component in the m6A ‘writers’, KIAA1429 was reported to promote breast cancer proliferation and growth in m6A-independent manners. However, the related mechanism of KIAA1429 in breast cancer metastasis have not been reported. Methods Western blots and quantitative real-time PCR were carried out to verify the expression of KIAA1429 in breast cancer cells SUM1315 and ZR-75-1 after KIAA1429 knockdown or overexpression. Transwell and in vivo metastasis assay were conducted to investigate the effects of KIAA1429 on migration and invasion of breast cancer cells. RIP and REMSA assay was performed to explore the direct correlation between KIAA1429 and SMC1A mRNA. ChIP assay combined with luciferase reporter assay were apply to explore the direct binding between SMC1A and SNAIL promotor region. Results KIAA1429 could significantly promote the migration and invasion of breast cancer cells. Knockdown of KIAA1429 could impede breast cancer metastasis in nude mice in vivo. The level of SNAIL expression and EMT progress was positively related with KIAA1429. Knockdown of KIAA1429 induced cell migration, invasion and EMT progress could be reversed by the upregulation of SNAIL. However, SMC1A, not KIAA1429 bound with SNAIL promoter region directly and promoted the transcription of SNAIL. Then, KIAA1429 could bind to the motif in the 3′-UTR of SMC1A mRNA directly and enhanced SMC1A mRNA stability. Conclusions In conclusion, our study revealed a novel mechanism of the KIAA1429/SMC1A/SNAIL axis in the regulation of invasion and metastasis of breast cancer, which may provide a potential biomarker and therapeutic target for breast cancer. Moreover, it firstly provided compelling evidences that KIAA1429 could regulate the targeted gene expression at posttranscriptional levels as an RNA-binding protein, unrelated the m6A modification.


2020 ◽  
Vol 295 (31) ◽  
pp. 10535-10559 ◽  
Author(s):  
Alex Kiepas ◽  
Elena Voorand ◽  
Julien Senecal ◽  
Ryuhjin Ahn ◽  
Matthew G. Annis ◽  
...  

SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor β (TGFβ)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFβ enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFβ-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFβ-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFβ. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFβ, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Xue Kong ◽  
Juan Li ◽  
Yanru Li ◽  
Weili Duan ◽  
Qiuchen Qi ◽  
...  

AbstractBreast cancer is the major cause of cancer death worldwide in women. Patients with metastasis have poor prognosis and the mechanisms of breast cancer metastasis are not completely understood. Long non-coding RNAs (lncRNAs) have been shown to have crucial roles in breast cancer development and progression. However, the underlying mechanisms by which lncRNA-driven breast cancer metastasis are unknown. The main objective of this paper is to explore a functional lncRNA and its mechanisms in breast cancer. Here we identified a novel lncRNA AC073352.1 that was significantly upregulated in breast cancer tissues and was associated with advanced TNM stages and poor prognosis in breast cancer patients. In addition, AC073352.1 was found to promote the migration and invasion of breast cancer cells in vitro and enhance breast cancer metastasis in vivo. Mechanistically, we elucidated that AC073352.1 interacted with YBX1 and stabilized its protein expression. Knock down of YBX1 reduced breast cancer cell migration and invasion and could partially reverse the stimulative effects of AC073352.1 overexpressed on breast cancer metastasis. Moreover, AC073352.1 might be packaged into exosomes by binding to YBX1 in breast cancer cells resulting in angiogenesis. Collectively, our results demonstrated that AC073352.1 promoted breast cancer metastasis and angiogenesis via binding YBX1, and it could serve as a promising, novel biomarker for prognosis and a therapeutic target in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document