Segmental lining design

2021 ◽  
pp. 269-322
Author(s):  
Benoît Jones
Keyword(s):  

Author(s):  
Saleta Gil Lorenzo ◽  
Mohammed Elshafie ◽  
Kenichi Soga ◽  
Robert Mair ◽  
Peter Wright ◽  
...  


2020 ◽  
pp. 99-106
Author(s):  
R. Bielecki ◽  
J. Schreyer
Keyword(s):  


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yong-feng Tang ◽  
Han-cheng Chen ◽  
Zhen-wei Ye ◽  
Ting-jin Liu ◽  
Yu-bing Yang

The transverse effective rigidity ratio is a key parameter when the uniform rigidity ring model is adopted to design or numerically analyse segmental lining structures commonly used on a shield-driven tunnel. Traditionally, the transverse effective rigidity ratio η is treated as a constant, which can be evaluated through theoretical analysis and model tests. In this study, scale models were designed and tested to investigate the variation of the transverse effective rigidity ratio in the segmental linings’ flattening deformation process. The test results suggested that in the elastic stage, the transverse effective rigidity ratio fluctuated between 0.667 and 0.734 for the stagger-jointed rings and fluctuated between 0.503 and 0.642 for the straight-jointed rings. When segmental linings were squashed and started to crack at the circumferential joints, the transverse effective rigidity ratio decreases sharply. Then, a regression equation was obtained to fit the variation trend of η with the increase of horizontal convergence to the outer-diameter ratio (ΔD/Dout). Finally, in a case study, the regression equation was adapted to determine the value of η of an operated shield tunnel which was once surcharged accidentally and deformed severely so as to numerically predict the prospective deformation induced by the upcoming adjacent excavation. Numerical results indicated that as the value of η decreases, the horizontal convergences of shield tunnel induced by adjacent excavation increase significantly and even more than doubled in the case study. Comparatively, through taking account of the operating tunnels’ exiting transverse deformation, the predicted deformation tends to be unfavourable.



2015 ◽  
Vol 7 (6) ◽  
pp. 674-683 ◽  
Author(s):  
Zhenchang Guan ◽  
Tao Deng ◽  
Gang Wang ◽  
Yujing Jiang
Keyword(s):  




2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wangping Qian ◽  
Taiyue Qi ◽  
Qing Zhao ◽  
Bingrong Pu ◽  
Jin Zhang ◽  
...  

Shallow buried shield metro tunnels constructed underneath subgrade project of high-speed railways are becoming increasingly common in China, but the lower metro tunnel bears the fatigue effect of dynamic load induced by the upper high-speed railway, so the long-term durability of segmental lining is a nonnegligible problem. The segmental lining structure of metro tunnel is in a state of static-dynamic loads for a long time, especially when a high-speed railway passes above the metro line, and the long-term durability of segmental lining needs further research. Based on theoretical analysis, the effect of different forms of loads on the fatigue life was analyzed, the change law of the static-dynamic loads on segmental lining was summarized, and the method was put forward to evaluate the fatigue life characteristics of segmental lining. The research results reveal that the additional dynamic load is the fundamental reason for the fatigue failure of the structure, and the existence of static load can cause and accelerate the occurrence of structural fatigue failure simultaneously. The results indicate that the fatigue life decreases gradually with the increase of static-dynamic load. Based on coupling analysis of static-dynamic loads of segmental lining, the fatigue life increases first and then decreases with the increase of buried depth of metro tunnel, and it remains unchanged when the depth exceeds a certain value. According to the actual metro tunnel engineering, by using ABAQUS software, a three-dimensional numerical simulation was carried out to analyze the characteristics of the fatigue life and evolution rules of segmental lining. Based on the modified fatigue life formula and metro service life, the optimization design of the buried depth was carried out to determine the most reasonable range of the buried depth. This study provides a valuable reference for safe operation and long-term durability of metro tunnels under high-speed railways.



2015 ◽  
Vol 93 ◽  
pp. 97-113 ◽  
Author(s):  
Xiaojun Li ◽  
Zhiguo Yan ◽  
Zhen Wang ◽  
Hehua Zhu


Sign in / Sign up

Export Citation Format

Share Document