Transmission Electron Microscopy of the Low Temperature Oxidation of Nb3Al

Author(s):  
Y Kim ◽  
K M Knowles
Author(s):  
R.L. Sabatini ◽  
Yimei Zhu ◽  
Masaki Suenaga ◽  
A.R. Moodenbaugh

Low temperature annealing (<400°C) of YBa2Cu3O7x in a ozone containing oxygen atmosphere is sometimes carried out to oxygenate oxygen deficient thin films. Also, this technique can be used to fully oxygenate thinned TEM specimens when oxygen depletion in thin regions is suspected. However, the effects on the microstructure nor the extent of oxygenation of specimens has not been documented for specimens exposed to an ozone atmosphere. A particular concern is the fact that the ozone gas is so reactive and the oxygen diffusion rate at these temperatures is so slow that it may damage the specimen by an over-reaction. Thus we report here the results of an investigation on the microstructural effects of exposing a thinned YBa2Cu3O7-x specimen in an ozone atmosphere using transmission electron microscopy and energy loss spectroscopy techniques.


2020 ◽  
Vol 321 ◽  
pp. 05018
Author(s):  
Eri Miura-Fujiwara ◽  
Yuya Ogawa ◽  
Mitsuo Niinomi ◽  
Tohru Yamasaki

The authors proposed an oxide coating on Ti alloys for the dental abutment tooth, and they had reported that Ti–29Nb–13Ta–4.6Zr (TNTZ) alloy forms a dense oxide layer by high-temperature oxidation. On the other hand, CP Ti forms a multilayered oxide consisted of rutile monolayers and the void layer. This morphological change by alloying is supposed to be mainly caused by Nb addition in Ti since the dense oxide layer of TNTZ mainly consists of rutile TiO2 and TiNb2O7. Therefore, in this study, oxidation behaviors of various range of Nb content of Ti-xNb alloys (x = 1 ~ 32 mol%) were investigated, and exfoliation resistance was evaluated. And in this paper, the oxide/metal interfacial microstructure of oxidized CP Ti, TNTZ alloy, and Ti-Nb alloy was studied by a transmission electron microscopy (TEM) and by a scanning transmission electron microscopy with an electron dispersive spectroscopy (STEM-EDS). The cross-sectional observations suggested that the substrate was gradually oxidized during heat treatment, and nucleation and grain growth of TiO2 and TiNb2O7 proceed at the metal/oxide interface. Consequently, the gradual oxidation process in TNTZ and Ti-Nb alloys could lead to its continuous interfacial microstructure and dense oxide structure, which can achieve high exfoliation resistance.


1989 ◽  
Vol 148 ◽  
Author(s):  
Zuzanna Liliental-Weber ◽  
Raymond P. Mariella

ABSTRACTTransmission electron microscopy of GaAs grown on Si for metal-semiconductor-metal photodetectors is presented in this paper. Two kinds of samples are compared: GaAs grown on a 15 Å Si epilayer grown on GaAs, and GaAs grown at low temperature (300°C) on Si substrates. It is shown that the GaAs epitaxial layer grown on thin Si layer has reverse polarity to the substrate (antiphase relation). Higher defect density is observed for GaAs grown on Si substrate. This higher defect density correlates with an increased device speed, but with reduced sensitivity.


2019 ◽  
Vol 55 (27) ◽  
pp. 3876-3878 ◽  
Author(s):  
Eleonora Aneggi ◽  
Jordi Llorca ◽  
Alessandro Trovarelli ◽  
Mimoun Aouine ◽  
Philippe Vernoux

In situ environmental transmission electron microscopy discloses room temperature carbon soot oxidation by ceria–zirconia at the nanoscale.


2003 ◽  
Vol 18 (2) ◽  
pp. 475-481 ◽  
Author(s):  
Karfa Traoré ◽  
Philippe Blanchart

Kaolinite mixed with calcite was sintered at low temperature (1100 °C; 5 °C/min). The successive phase transformations are metakaolinite to gehlenite and then anorthite, although the available phase diagram indicates a direct anorthite recrystallization. Transmission electron microscopy and electron diffraction studies of nanocrystallites revealed that the transformation path is favored by the structural similarities of phases. In particular, the pseudolayers of gehlenite have a major orientation relationship with the initial metakaolinite layers. The gehlenite axis, [001]G, is parallel to the metakaolinite axis, [001]A. This direct transition is favored by the existence of Si tetrahedral units and 4–fold–coordinated Al in both structures. Ca atoms, initially in the interlayer spacing of metakaolinite, remain in the interlayers of gehlenite. During the second transformation step, anorthite recrystallizes from gehlenite with axis [020]A parallel to [210]G. It is proposed that this orientation relationship is favored by the orientation and shape of Ca-atom channels through both structures, along [001]G and [100]A axes.


1992 ◽  
Vol 263 ◽  
Author(s):  
Ting-Yen Chiang ◽  
En-Huery Liu ◽  
Der-Hwa Yiin ◽  
Tri-Rung Yew

ABSTRACTThis paper presents results of the low—temperature epitaxial growth of GaAs on Si substrates with orientation 1°—4° off (100) by molecular beam epitaxy (MBE). The epitaxial growth ·is carried out on Si wafers subjected to HF solution treatment by “spin-etch” technique before the wafer is transferred to the entry chamber of MBE system. Methods used for reducing defect density in the epitaxial layers are proposed. The characterization techniques include cross-sectional transmission electron microscopy (XTEM), plan-view transmission electron microscopy, scanning electron microscopy (S EM), and double crystal X-ray diffraction (DCXRD). Epitaxial films with a full width at half—maximum (FWHM) of about 310 arcsec measured by DCXRD are obtained without annealing.-


2015 ◽  
Vol 1 (11) ◽  
pp. e1500462 ◽  
Author(s):  
Dehui Deng ◽  
Xiaoqi Chen ◽  
Liang Yu ◽  
Xing Wu ◽  
Qingfei Liu ◽  
...  

Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis.


1982 ◽  
Vol 14 ◽  
Author(s):  
G. A. Rozgonyi ◽  
R. J. Jaccodine ◽  
C. W. Pearce

ABSTRACTIn this paper we report preliminary observations of oxygen precipitation in degenerately-doped silicon using etching, optical microscopy and transmission electron microscopy. It was found that n+ material was resistant to precipitation, but p+ material precipitated readily. A multistep heat treatment starting with a low temperature step to achieve a high supersaturation ratio was sucessfully used to induce precipitation in n+ material.


Sign in / Sign up

Export Citation Format

Share Document