- Probability Distributions for Discrete Random Variables

Author(s):  
Robert H. Swendsen

The theory of probability developed in Chapter 3 for discrete random variables is extended to probability distributions, in order to treat the continuous momentum variables. The Dirac delta function is introduced as a convenient tool to transform continuous random variables, in analogy with the use of the Kronecker delta for discrete random variables. The properties of the Dirac delta function that are needed in statistical mechanics are presented and explained. The addition of two continuous random numbers is given as a simple example. An application of Bayesian probability is given to illustrate its significance. However, the components of the momenta of the particles in an ideal gas are continuous variables.


Author(s):  
Therese M. Donovan ◽  
Ruth M. Mickey

This chapter focuses on probability mass functions. One of the primary uses of Bayesian inference is to estimate parameters. To do so, it is necessary to first build a good understanding of probability distributions. This chapter introduces the idea of a random variable and presents general concepts associated with probability distributions for discrete random variables. It starts off by discussing the concept of a function and goes on to describe how a random variable is a type of function. The binomial distribution and the Bernoulli distribution are then used as examples of the probability mass functions (pmf’s). The pmfs can be used to specify prior distributions, likelihoods, likelihood profiles and/or posterior distributions in Bayesian inference.


Sign in / Sign up

Export Citation Format

Share Document