Use of Hydrological Modeling Coupled with Geographical Information System for Plotting Sustainable Management Framework

Author(s):  
Pankaj Kumar ◽  
Chander Kumar Singh
Author(s):  
Md. Ashikur Rahman ◽  
M. H. Sazzad ◽  
R. S. Rupom

Water is an important resource of the earth’s surface and it is integral for all on this planet. The availability or the scarcity of water depends on the watershed characterizes that consider the basic, linear, and shape parameters of any waterbody. The objective of the study was to delineate 14 morphometric parameters in the Barind region (Dinajpur district, Bangladesh) for sustainable hydrological modeling. An ASTER-DEM of 30-meter resolution data, geographical information system (GIS), and Remote sensing technique were used for extracting drainage components of interest region. The whole study region was covered by the flow of the Purnovoba river, Jamuna river, Atrai river (part-1 and part-2). Research results found that the Purnovoba river had a high bifurcation ratio (0.9982) that defined hydrologically more disturbed than the other three watershed areas and it had a high stream frequency (0.8332) that denoted rocky having low infiltration capacity. Jamuna river had a low drainage density (0.7322) that defined more vegetation having higher permeability. Besides, the Jamuna river had the lowest no. of stream order that was insignificant in the steady runoff process and less prone to cause a flash flood. The research predicted that the availability of groundwater might decrease to Jamuna river in the future as it had the lowest basin area (217.42 sqr. km ) and perimeter (114.90 km) and the basin surface slope would become gentle to Atrai river part-1 for the lowest length of overland flow (0.6072). Purnovoba river experienced the lowest form factor  (0.2351) which indicated the most possibility for erosion. The elongated ratio of all basins was greater than 0.5 which considered all the shapes were more elongated. These findings will help for further modeling of an integrated watershed for sustainable hydrological models in the Barind region.


2017 ◽  
Vol 3 (2) ◽  
pp. 65
Author(s):  
Anith Nabilah Mustafa ◽  
Siti Rasidah Md Sakip

Snatch theft incidents are on the rise in Malaysia especially in the cities. It tends to happen in cities because there is a possibility to commit it and both crime and urban are often associated with each other. The aim of this paper is to find out whether the building with two or more levels in urban area contributes to the snatch theft incidents. The present study has been taken up to detect the hotspots of snatch theft in Selangor, Malaysia. The crime data were obtained by requesting and analysing the index crime statistical data from the Royal Malaysian Police (RMP). This study made use of the Geographical Information System (GIS) where its 3D modelling function to construct, assess and analyse the area with high snatch theft cases. The crime reports of 2010 until 2015 were geocoded and the crime maps were prepared in ArcGIS 10.2. It was found that the hotspot area is a mix-used development area which consists mainly of commercial and residential areas of more than two-level buildings. 


2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Daru Mulyono

The objectives of the research were to make land suitability map for sugarcane plant (Saccharum officinarum), to give recommendation of location including area for sugarcane plant cultivation and to increase sugarcane plant productivity. The research used maps overlay and Geographical Information System (GIS) which used Arch-View Spatial Analysis version 2,0 A in Remote Sensing Laboratory, Agency for the Assessment and Application of Technology (BPPT), Jakarta. The research was carried out in Tegal Regency starting from June to October 2004.The results of the research showed that the suitable, conditionally suitable, and not suitable land for sugarcane cultivation in Tegal Regency reached to a high of 20,227 ha, 144 ha, and 81,599 ha respectively. There were six most dominant kind of soil: alluvial (32,735 ha), grumosol 5,760 ha), mediteran (17,067 ha), latosol   (18,595 ha), glei humus (596 ha), and regosol (22,721 ha).


Sign in / Sign up

Export Citation Format

Share Document