Secretin as a satiation whisperer with the potential to turn into an obesity-curbing knight

Endocrinology ◽  
2021 ◽  
Author(s):  
Katharina Schnabl ◽  
Yongguo Li ◽  
Mueez U-Din ◽  
Martin Klingenspor

Abstract The obesity pandemic requires effective preventative and therapeutic intervention strategies. Successful and sustained obesity treatment is currently limited to bariatric surgery. Modulating the release of gut hormones is considered promising to mimic bariatric surgery with its beneficial effects on food intake, body weight and blood glucose levels. The gut peptide secretin was the first molecule to be termed a hormone; nevertheless, it only recently has been established as a legitimate anorexigenic peptide. In contrast to gut hormones that crosstalk with the brain either directly or by afferent neuronal projections, secretin mediates meal-associated brown fat thermogenesis to induce meal termination, thereby qualifying this physiological mechanism as an attractive, peripheral target for the treatment of obesity. In this perspective, it is of pivotal interest to deepen our yet superficial knowledge on the physiological roles of secretin as well as meal-associated thermogenesis in energy balance and body weight regulation. Of note, the emerging differences between meal-associated thermogenesis and cold-induced thermogenesis must be taken into account. In fact, there is no correlation between these two entities. In addition, the investigation of potential effects of secretin in hedonic-driven food intake, bariatric surgery as well as chronic treatment using suitable application strategies to overcome pharmacokinetic limitations will provide further insight into its potential to influence energy balance. The aim of this article is to review the facts on secretin’s metabolic effects, address prevailing gaps in our knowledge, and provide an overview on the opportunities and challenges of the therapeutic potential of secretin in body weight control.


2008 ◽  
Vol 295 (1) ◽  
pp. E78-E84 ◽  
Author(s):  
Sabine Strassburg ◽  
Stefan D. Anker ◽  
Tamara R. Castaneda ◽  
Lukas Burget ◽  
Diego Perez-Tilve ◽  
...  

Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is the only circulating agent to powerfully promote a positive energy balance. Such action is mediated predominantly by central nervous system pathways controlling food intake, energy expenditure, and nutrient partitioning. The ghrelin pathway may therefore offer therapeutic potential for the treatment of catabolic states. However, the potency of the endogenous hormone ghrelin is limited due to a short half-life and the fragility of its bioactivity ensuring acylation at serine 3. Therefore, we tested the metabolic effects of two recently generated GHS-R agonists, BIM-28125 and BIM-28131, compared with ghrelin. All agents were administered continuously for 1 mo in doses of 50 and 500 nmol·kg−1·day−1 using implanted subcutaneous minipumps in rats. High-dose treatment with single agonists or ghrelin increased body weight gain by promoting fat mass, whereas BIM-28131 was the only one also increasing lean mass significantly. Food intake increased during treatment with BIM-28131 or ghrelin, whereas no effects on energy expenditure were detected. With the lower dose, only BIM-28131 had a significant effect on body weight. This also held true when the compound was administered by subcutaneous injection three times/day. No symptoms or signs of undesired effects were observed in any of the studies or treated groups. These results characterize BIM-28131 as a promising GHS-R agonist with an attractive action profile for the treatment of catabolic disease states such as cachexia.



1997 ◽  
Vol 51 (12) ◽  
pp. 846-855 ◽  
Author(s):  
E Doucet ◽  
A Tremblay


2010 ◽  
Vol 298 (3) ◽  
pp. E726-E734 ◽  
Author(s):  
Paulo José Forcina Martins ◽  
Marina Soares Marques ◽  
Sergio Tufik ◽  
Vânia D'Almeida

Several pieces of evidence support that sleep duration plays a role in body weight control. Nevertheless, it has been assumed that, after the identification of orexins (hypocretins), the molecular basis of the interaction between sleep and energy homeostasis has been provided. However, no study has verified the relationship between neuropeptide Y (NPY) and orexin changes during hyperphagia induced by sleep deprivation. In the current study we aimed to establish the time course of changes in metabolite, endocrine, and hypothalamic neuropeptide expression of Wistar rats sleep deprived by the platform method for a distinct period (from 24 to 96 h) or sleep restricted for 21 days (SR-21d). Despite changes in the stress hormones, we found no changes in food intake and body weight in the SR-21d group. However, sleep-deprived rats had a 25–35% increase in their food intake from 72 h accompanied by slight weight loss. Such changes were associated with increased hypothalamus mRNA levels of prepro-orexin (PPO) at 24 h followed by NPY at 48 h of sleep deprivation. Conversely, sleep recovery reduced the expression of both PPO and NPY, which rapidly brought the animals to a hypophagic condition. Our data also support that sleep deprivation rapidly increases energy expenditure and therefore leads to a negative energy balance and a reduction in liver glycogen and serum triacylglycerol levels despite the hyperphagia. Interestingly, such changes were associated with increased serum levels of glucagon, corticosterone, and norepinephrine, but no effects on leptin, insulin, or ghrelin were observed. In conclusion, orexin activation accounts for the myriad changes induced by sleep deprivation, especially the hyperphagia induced under stress and a negative energy balance.



2013 ◽  
Vol 305 (4) ◽  
pp. E507-E518 ◽  
Author(s):  
S. Nausheen ◽  
I. H. Shah ◽  
A. Pezeshki ◽  
D. L. Sigalet ◽  
P. K. Chelikani

Bariatric surgeries are hypothesized to produce weight loss and improve diabetes control by multiple mechanisms including gastric restriction and lower gut stimulation; the relative importance of these mechanisms remains poorly understood. We compared the effects of a typical foregut procedure, sleeve gastrectomy, (SG) with a primarily hindgut surgery, ileal transposition (IT), alone and together (SGIT), or sham manipulations, on food intake, body weight, gut hormones, glucose tolerance, and key markers of glucose homeostasis in peripheral tissues of adult male Sprague-Dawley rats (450–550 g, n = 7–9/group). SG, IT, and SGIT surgeries produced transient reduction in food intake and weight gain; the effects of SG and IT on intake and body weight were nonadditive. SG, IT, and SGIT surgeries resulted in increased tissue expression and plasma concentrations of the lower gut hormones glucagon-like peptide-1 and peptide YY and decreased plasma glucose-dependent insulinotropic peptide, insulin, and leptin concentrations. Despite transient effects on intake and weight gain, the SG, IT, and SGIT surgeries produced a significant improvement in glucose tolerance. In support of glycemic improvements, the protein abundance of key markers of glucose metabolism (e.g., GLUT4, PKA, IRS-1) in muscle and adipose tissue were increased, whereas the expression of key gluconeogenic enzyme in liver (G-6-Pase) were decreased following the surgeries. Therefore, our data suggest that enhanced lower gut stimulation following SG, IT, and SGIT surgeries leads to transient reduction in food intake and weight gain together with enhanced secretion of lower gut hormones and improved glucose clearance by peripheral tissues.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.



2020 ◽  
Author(s):  
Clayton Spada ◽  
Chau Vu ◽  
Iona Raymond ◽  
Warren Tong ◽  
Chia-Lin Chuang ◽  
...  

Abstract Background Bimatoprost negatively regulates adipogenesis in vitro and likely participates in a negative feedback loop on anandamide-induced adipogenesis. Here, we investigate the broader metabolic effects of bimatoprost action in vivo in rats under both normal state and obesity-inducing conditions. Methods Male Sprague Dawley rats were a fed standard chow (SC) diet in conjunction with dermally applied bimatoprost treatment for a period of 9–10 weeks. Body weight gain, energy expenditure, food intake, and hormones associated with satiety were measured. Gastric emptying was also separately evaluated. In obesity-promoting diet studies, rats were fed a cafeteria diet (CAF) and gross weight, fat accumulation in SQ, visceral fat and liver was evaluated together with standard serum chemistry. Results Chronic bimatoprost administration attenuated weight gain in rats fed either standard or obesity-promoting diets over a 9–10 weeks. Bimatoprost increased satiety as measured by decreased food intake, gastric emptying and circulating gut hormone levels. Additionally, SQ and visceral fat mass was distinctly affected by treatment. Bimatoprost increased satiety as measured by decreased food intake, gastric emptying and circulating gut hormone levels. Conclusions These findings suggest that bimatoprost (and possibly prostamide F2α) regulates energy homeostasis through actions on dietary intake. These actions likely counteract the metabolic actions of anandamide through the endocannabinoid system potentially revealing a new pathway that could be exploited for therapeutic development.



Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5855-5864 ◽  
Author(s):  
Jonathan D. Roth ◽  
Heather Hughes ◽  
Eric Kendall ◽  
Alain D. Baron ◽  
Christen M. Anderson

Effects of amylin and pair feeding (PF) on body weight and metabolic parameters were characterized in diet-induced obesity-prone rats. Peripherally administered rat amylin (300 μg/kg·d, 22d) reduced food intake and slowed weight gain: approximately 10% (P < 0.05), similar to PF. Fat loss was 3-fold greater in amylin-treated rats vs. PF (P < 0.05). Whereas PF decreased lean tissue (P < 0.05 vs. vehicle controls; VEH), amylin did not. During wk 1, amylin and PF reduced 24-h respiratory quotient (mean ± se, 0.82 ± 0.0, 0.81 ± 0.0, respectively; P < 0.05) similar to VEH (0.84 ± 0.01). Energy expenditure (EE mean ± se) tended to be reduced by PF (5.67 ± 0.1 kcal/h·kg) and maintained by amylin (5.86 ± 0.1 kcal/h·kg) relative to VEH (5.77 ± 0.0 kcal/h·kg). By wk 3, respiratory quotient no longer differed; however, EE increased with amylin treatment (5.74 ± 0.09 kcal/·kg; P < 0.05) relative to VEH (5.49 ± 0.06) and PF (5.38 ± 0.07 kcal/h·kg). Differences in EE, attributed to differences in lean mass, argued against specific amylin-induced thermogenesis. Weight loss in amylin and pair-fed rats was accompanied by similar increases arcuate neuropeptide Y mRNA (P < 0.05). Amylin treatment, but not PF, increased proopiomelanocortin mRNA levels (P < 0.05 vs. VEH). In a rodent model of obesity, amylin reduced body weight and body fat, with relative preservation of lean tissue, through anorexigenic and specific metabolic effects.



2005 ◽  
Vol 51 (11) ◽  
pp. 2131-2137 ◽  
Author(s):  
Tania Siahanidou ◽  
Helen Mandyla ◽  
Maria Vounatsou ◽  
Dimitris Anagnostakis ◽  
Ioannis Papassotiriou ◽  
...  

Abstract Background: Peptide YY (PYY) and ghrelin are gastrointestinal tract–derived hormones that play roles in the regulation of food intake and energy balance. Negative energy balance often occurs in hospitalized preterm infants. Methods: To measure serum concentrations of PYY in preterm and full-term infants and to investigate their correlations with anthropometric characteristics, food intake, and serum ghrelin concentrations, we measured serum PYY and ghrelin concentrations by RIA in 62 healthy preterm infants [mean (SD) gestational age, 32.0 (2.1) weeks; postnatal age, 40.9 (14.8) days] and 15 healthy full-term infants of comparable postnatal age. All of the infants were formula-fed every 3 h. Results: PYY concentrations were significantly higher in preterm [1126.2 (215.4) ng/L] than in full-term infants [825.3 (234.4) ng/L; P <0.001]. In the entire study population, serum PYY concentrations correlated negatively with gestational age and anthropometric measurements (birth weight, body weight, body length, body mass index, and head circumference) and positively with serum ghrelin concentrations, whereas there was no significant correlation between PYY concentration and caloric intake or weight gain. Multiple regression analysis, after correction for prematurity, revealed that serum PYY concentrations correlated independently with serum ghrelin concentrations and infant body weight or body mass index. Conclusions: Circulating concentrations of PYY may increase in preterm infants to compensate for the negative body-weight balance. The physiologic mechanisms behind the correlation between PYY and ghrelin remain to be elucidated.



Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1726
Author(s):  
Hyejung Hwang ◽  
Jisu Kim ◽  
Kiwon Lim

Red ginseng (RG) ingestion reportedly affects body weight, food intake, and fat accumulation reduction. It also induces changes in energy metabolism regulation and glycemic control. Previously, 2-week RG ingestion with endurance training was found to enhance fat oxidation during exercise. However, such effects on energy metabolism and the expression of mRNAs related to energy substrate utilization in resting mice (untrained mice) are still unclear. Here, we determined the effect of RG on energy metabolism and substrate utilization in untrained male mice. Twenty-four mice were separated into an RG group that received a daily dosage of 1 g/kg RG for 2 weeks, and a control (CON). Energy expenditure, blood and tissue glycogen levels, and expression of mRNAs related to energy substrate utilization in muscles were measured before and 2 weeks after treatment. Total food intake was significantly lower in the RG than in the CON group (p < 0.05), but final body weights did not differ. Carbohydrate and fat oxidation over 24 h did not change in either group. There were no significant differences in gastrocnemius GLUT4, MCT1, MCT4, FAT/CD36, and CPT1b mRNA levels between groups. Thus, the effects of RG ingested during rest differ from the effects of RG ingestion in combination with endurance exercise; administering RG to untrained mice for 2 weeks did not change body weight and energy metabolism. Therefore, future studies should consider examining the RG ingestion period and dosage for body weight control and improving energy metabolism.



2020 ◽  
Vol 13 ◽  
pp. 117955142090584 ◽  
Author(s):  
Annie Hasib

The ever-increasing prevalence of obesity and Type 2 diabetes has necessitated the development of newer and more effective approaches for achieving efficient glycemic control and weight loss. Conventional treatment methods often result in weight gain, further deteriorating the already impaired metabolic control in people with obesity/Type 2 diabetes. Alleviation of obesity and diabetes achieved after bariatric surgeries highlight the therapeutic importance of gut-brain axis and entails development of more patient-friendly approaches replicating the positive metabolic effects of bariatric surgery. Given the potential involvement of several gut hormones in the success of bariatric surgery, the therapeutic importance of synergistic interaction between these hormones for improved metabolism cannot be ignored. Many unimolecular multiagonist peptides are in preclinical and clinical trials as they maximize the combinatorial metabolic efficacy by concurrent activation of multiple gut hormone receptors. This review summarizes the ongoing developments of multiagonist peptides as novel therapeutic approaches against obesity-diabetes.



Sign in / Sign up

Export Citation Format

Share Document