TRANSCRANIAL DOPPLER FOR PREDICTING DELAYED CEREBRAL ISCHEMIA AFTER SUBARACHNOID HEMORRHAGE

Neurosurgery ◽  
2009 ◽  
Vol 65 (2) ◽  
pp. 316-324 ◽  
Author(s):  
Emmanuel Carrera ◽  
J. Michael Schmidt ◽  
Mauro Oddo ◽  
Luis Fernandez ◽  
Jan Claassen ◽  
...  

Abstract OBJECTIVE Transcranial Doppler (TCD) is widely used to monitor the temporal course of vasospasm after subarachnoid hemorrhage (SAH), but its ability to predict clinical deterioration or infarction from delayed cerebral ischemia (DCI) remains controversial. We sought to determine the prognostic utility of serial TCD examination after SAH. METHODS We analyzed 1877 TCD examinations in 441 aneurysmal SAH patients within 14 days of onset. The highest mean blood flow velocity (mBFV) value in any vessel before DCI onset was recorded. DCI was defined as clinical deterioration or computed tomographic evidence of infarction caused by vasospasm, with adjudication by consensus of the study team. Logistic regression was used to calculate adjusted odds ratios for DCI risk after controlling for other risk factors. RESULTS DCI occurred in 21% of patients (n = 92). Multivariate predictors of DCI included modified Fisher computed tomographic score (P = 0.001), poor clinical grade (P = 0.04), and female sex (P = 0.008). After controlling for these variables, all TCD mBFV thresholds between 120 and 180 cm/s added a modest degree of incremental predictive value for DCI at nearly all time points, with maximal sensitivity by SAH day 8. However, the sensitivity of any mBFV more than 120 cm/s for subsequent DCI was only 63%, with a positive predictive value of 22% among patients with Hunt and Hess grades I to III and 36% in patients with Hunt and Hess grades IV and V. Positive predictive value was only slightly higher if mBFV exceeded 180 cm/s. CONCLUSION Increased TCD flow velocities imply only a mild incremental risk of DCI after SAH, with maximal sensitivity by day 8. Nearly 40% of patients with DCI never attained an mBFV more than 120 cm/s during the course of monitoring. Given the poor overall sensitivity of TCD, improved methods for identifying patients at high risk for DCI after SAH are needed.

2016 ◽  
Vol 124 (5) ◽  
pp. 1257-1264 ◽  
Author(s):  
Gyanendra Kumar ◽  
Reza Bavarsad Shahripour ◽  
Mark R. Harrigan

OBJECT The impact of transcranial Doppler (TCD) ultrasonography evidence of vasospasm on patient-centered clinical outcomes following aneurysmal subarachnoid hemorrhage (aSAH) is unknown. Vasospasm is known to lead to delayed cerebral ischemia (DCI) and poor outcomes. This systematic review and meta-analysis evaluates the predictive value of vasospasm on DCI, as diagnosed on TCD. METHODS MEDLINE, Scopus, the Cochrane trial register, and clinicaltrials.gov were searched through September 2014 using key words and the terms “subarachnoid hemorrhage,” “aneurysm,” “aneurysmal,” “cerebral vasospasm,” “vasospasm,” “transcranial Doppler,” and “TCD.” Sensitivities, specificities, and positive and negative predictive values were pooled by a DerSimonian and Laird random-effects model. RESULTS Seventeen studies (n = 2870 patients) met inclusion criteria. The amount of variance attributable to heterogeneity was significant (I2 > 50%) for all syntheses. No studies reported the impact of TCD evidence of vasospasm on functional outcome or mortality. TCD evidence of vasospasm was found to be highly predictive of DCI. Pooled estimates for TCD diagnosis of vasospasm (for DCI) were sensitivity 90% (95% confidence interval [CI] 77%–96%), specificity 71% (95% CI 51%–84%), positive predictive value 57% (95% CI 38%–71%), and negative predictive value 92% (95% CI 83%–96%). CONCLUSIONS TCD evidence of vasospasm is predictive of DCI with high accuracy. Although high sensitivity and negative predictive value make TCD an ideal monitoring device, it is not a mandated standard of care in aSAH due to the paucity of evidence on clinically relevant outcomes, despite recommendation by national guidelines. High-quality randomized trials evaluating the impact of TCD monitoring on patient-centered and physician-relevant outcomes are needed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Vasilios E. Papaioannou ◽  
Karol P. Budohoski ◽  
Michal M. Placek ◽  
Zofia Czosnyka ◽  
Peter Smielewski ◽  
...  

Abstract Background Cerebral vasospasm (VS) and delayed cerebral ischemia (DCI) constitute major complications following subarachnoid hemorrhage (SAH). A few studies have examined the relationship between different indices of cerebrovascular dynamics with the occurrence of VS. However, their potential association with the development of DCI remains elusive. In this study, we investigated the pattern of changes of different transcranial Doppler (TCD)-derived indices of cerebrovascular dynamics during vasospasm in patients suffering from subarachnoid hemorrhage, dichotomized by the presence of delayed cerebral ischemia. Methods A retrospective analysis was performed using recordings from 32 SAH patients, diagnosed with VS. Patients were divided in two groups, depending on development of DCI. Magnitude of slow waves (SWs) of cerebral blood flow velocity (CBFV) was measured. Cerebral autoregulation was estimated using the moving correlation coefficient Mxa. Cerebral arterial time constant (tau) was expressed as the product of resistance and compliance. Complexity of CBFV was estimated through measurement of sample entropy (SampEn). Results In the whole population (N = 32), magnitude of SWs of ipsilateral to VS side CBFV was higher during vasospasm (4.15 ± 1.55 vs before: 2.86 ± 1.21 cm/s, p < 0.001). Ipsilateral SWs of CBFV before VS had higher magnitude in DCI group (N = 19, p < 0.001) and were strongly predictive of DCI, with area under the curve (AUC) = 0.745 (p = 0.02). Vasospasm caused a non-significant shortening of ipsilateral values of tau and increase in SampEn in all patients related to pre-VS measurements, as well as an insignificant increase of Mxa in DCI related to non-DCI group (N = 13). Conclusions In patients suffering from subarachnoid hemorrhage, TCD-detected VS was associated with higher ipsilateral CBFV SWs, related to pre-VS measurements. Higher CBFV SWs before VS were significantly predictive of delayed cerebral ischemia.


2001 ◽  
Vol 95 (3) ◽  
pp. 393-401 ◽  
Author(s):  
Tõnu Rätsep ◽  
Toomas Asser

Object. In this study the authors evaluated the relative role of cerebral hemodynamic impairment (HDI) in the pathogenesis of delayed cerebral ischemia and poor clinical outcome after aneurysmal subarachnoid hemorrhage (SAH). Methods. Cerebral hemodynamics were assessed daily with transcranial Doppler (TCD) ultrasonography in 55 consecutive patients with verified SAH. Hemodynamic impairment was defined as blood flow velocity (BFV) values consistent with vasospasm in conjunction with impaired autoregulatory vasodilation as evaluated using the transient hyperemic response tests in the middle cerebral arteries. A total of 1344 TCD examinations were performed, in which the evaluation of HDI was feasible during 80.9% and HDI was registered during 12% of the examinations. It was found that HDI occurred in 60% of patients and was frequently recorded in conjunction with severe vasospasm (p < 0.05) and a rapid increase of BFV values (p < 0.05). Detection of HDI was closely associated with the development of delayed ischemic brain damage after SAH (p < 0.05). Furthermore, because delayed ischemia was never observed in cases in which vasospasm had not led to the development of HDI, its occurrence increased significantly the likelihood of subsequent cerebral ischemia among the patients with vasospasm (p < 0.05). Detection of HDI was independently related to unfavorable clinical outcome according to Glasgow Outcome Scale at 6 months after SAH (p < 0.05). Conclusions. The results showed that HDI is common after SAH and can be evaluated with TCD ultrasonography in routine clinical practice. Detection of HDI could be useful for identifying patients at high or low risk for delayed ischemic complications and unfavorable clinical outcome after SAH.


2020 ◽  
Vol 132 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Salah G. Aoun ◽  
Sonja E. Stutzman ◽  
Phuong-Uyen N. Vo ◽  
Tarek Y. El Ahmadieh ◽  
Mohamed Osman ◽  
...  

OBJECTIVECerebral vasospasm causing delayed cerebral ischemia (DCI) is a source of significant morbidity after subarachnoid hemorrhage (SAH). Transcranial Doppler is used at most institutions to detect sonographic vasospasm but has poor positive predictive value for DCI. Automated assessment of the pupillary light reflex has been increasingly used as a reliable way of assessing pupillary reactivity, and the Neurological Pupil Index (NPi) has been shown to decrease hours prior to the clinical manifestation of ischemic injury or herniation syndromes. The aim of this study was to investigate the role of automated pupillometry in the setting of SAH, as a potential adjunct to TCD.METHODSOur analysis included patients that had been diagnosed with aneurysmal SAH and admitted to the neuro–intensive care unit of the University of Texas Southwestern Medical Center between November 2015 and June 2017. A dynamic infrared pupillometer was used for all pupillary measurements. An NPi value ranging from 3 to 5 was considered normal, and from 0 to 2.9 abnormal. Sonographic vasospasm was defined as middle cerebral artery velocities greater than 100 cm/sec with a Lindegaard ratio greater than 3 on either side on transcranial Doppler. Most patients had multiple NPi readings daily and we retained the lowest value for our analysis. We aimed to study the association between DCI and sonographic vasospasm, and DCI and NPi readings.RESULTSA total of 56 patients were included in the final analysis with 635 paired observations of daily TCD and NPi data. There was no statistically significant association between the NPi value and the presence of sonographic vasospasm. There was a significant association between DCI and sonographic vasospasm, χ2(1) = 6.4112, p = 0.0113, OR 1.6419 (95% CI 1.1163–2.4150), and between DCI and an abnormal decrease in NPi, χ2(1) = 38.4456, p < 0.001, OR 3.3930 (95% CI 2.2789–5.0517). Twelve patients experienced DCI, with 7 showing a decrease of their NPi to an abnormal range. This change occurred > 8 hours prior to the clinical decline 71.4% of the time. The NPi normalized in all patients after treatment of their vasospasm.CONCLUSIONSIsolated sonographic vasospasm does not seem to correlate with NPi changes, as the latter likely reflects an ischemic neurological injury. NPi changes are strongly associated with the advent of DCI and could be an early herald of clinical deterioration.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013126
Author(s):  
Hsin Yi Chen ◽  
Jonathan Elmer ◽  
Sahar F. Zafar ◽  
Manohar Ghanta ◽  
Valdery Moura Junior ◽  
...  

Background and Objectives:Delayed cerebral ischemia (DCI) is the leading complication of subarachnoid hemorrhage (SAH). Because DCI was traditionally thought to be caused by large vessel vasospasm, transcranial Doppler ultrasounds (TCDs) have been the standard of care. Continuous EEG has emerged as a promising complementary monitoring modality and predicts increased DCI risk. Our objective was to determine whether combining EEG and TCD data improves prediction of DCI after SAH. We hypothesize that integrating these diagnostic modalities improves DCI prediction.Methods:We retrospectively assessed patients with moderate-severe SAH (2011-2015, Fisher=3-4 or Hunt-Hess=4-5) who had both prospective TCD and EEG acquisition during hospitalization. Middle cerebral artery (MCA) peak systolic velocities (PSV) and the presence or absence of epileptiform abnormalities (EA), defined as seizures, epileptiform discharges, and rhythmic/periodic activity, were recorded daily. Logistic regressions were used to identify significant covariates of EA and TCD to predict DCI. Group-Based Trajectory Modeling (GBTM) was used to account for changes over time by identifying distinct group trajectories of MCA PSV and EA associated with DCI risk.Results:We assessed 107 patients, and DCI developed in 56 (51.9%). Univariate predictors of DCI are presence of high-MCA velocity (PSV≥200cm/s, Se=27%, Sp=89%) and EA (Se=66%, Sp=62%) both on or before day 3. Two univariate GBTM trajectories of EA predicted DCI (Se=64%, Sp=62.75%). Logistic regression and GBTM models using both TCD and EEG monitoring performed better. The best logistic regression and GBTM models used both TCD and EEG data, Hunt-Hess score at admission, and aneurysm treatment as predictors of DCI (Logistic Regression: Se=90%, Sp=70%; GBTM: Se=89%, Sp=67%).Discussion:EEG and TCD biomarkers combined provide the best prediction of DCI. The conjunction of clinical variables with the timing of EA and high-MCA velocities improved model performance. These results suggest that TCD and cEEG are promising complementary monitoring modalities for DCI prediction. Our model has potential to serve as a decision support tool in SAH management.Classification of Evidence:This study provides Class II evidence that combined TCD and EEG monitoring can identify delayed cerebral ischemia after subarachnoid hemorrhage.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Andrew Nguyen ◽  
Craig A Williamson ◽  
Aditya S Pandey ◽  
Kyle M Sheehan ◽  
Venkatakrishna Rajajee

Introduction: Delayed Cerebral Ischemia (DCI) occurs during a risk period of 3-21 days following aneurysmal subarachnoid hemorrhage (aSAH) and is associated with worse outcomes. The identification of patients at low risk for DCI might permit triage to less intense monitoring and management. While large-vessel vasospasm (LVV) is a distinct clinical entity from DCI, the presence of moderate-severe LVV is associated with a higher risk of DCI. Hypothesis: The absence of moderate-severe LVV on screening CT angiography (CTA) performed within the first few days of the DCI risk period will accurately identify patients at low risk for subsequent DCI. Methods: Our institutional SAH outcomes registry was queried for all aSAH patients admitted 2016 - 2019 who underwent CTA brain between days 4-8 following ictus. We excluded patients who suffered DCI prior to this CTA study. All variables are prospectively entered into the registry, and outcomes including DCI and LVV are prospectively adjudicated. We evaluated the accuracy of moderate-severe LVV on CTA performed 4-8 days from ictus for the prediction of subsequent DCI, with a focus on the Negative Predictive Value (NPV). Results: A total of 243 aSAH patients were admitted during the study timeframe and 76 (31%) underwent CTA during the 4-8 day window following ictus. Of these, 22 were excluded for occurrence of DCI prior to the CTA study. Of 54 patients meeting eligibility criteria, 11 (20%) had moderate-severe LVV on the screening CTA study performed during the risk period. Seven of 11 (64%) patients with moderate-severe LVV on the day 4-8 screening CTA, vs 6 of 43 (14%) patients without, subsequently developed DCI. The NPV of CTA performed during days 4-8 for the subsequent development of DCI was 86% (95%CI 77-92%). Sensitivity was 54% (25-81%), Specificity 90% (77-97%) and Positive Predictive Value 64% (38-83%). Conclusions: The NPV of screening CTA performed between days 4-8 following SAH for the subsequent development of DCI was moderate, at 86%. The population studied likely represents a high-risk cohort, however, prospective studies of alternate risk-stratification strategies are necessary.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Matthew Triano ◽  
Maite J Corbin ◽  
Sameer Desale ◽  
Ai-Hsi Liu ◽  
Daniel R Felbaum ◽  
...  

Introduction: Although transcranial Doppler (TCD) evaluation for vasospasm remains an important study in aneurysmal subarachnoid hemorrhage (aSAH) management, its precise role in predicting delayed cerebral ischemia (DCI) remains unclear. Hypothesis: We evaluated optimal measures for evaluating TCD velocities and hypothesized that TCD velocity change would be the best predictor for DCI in patients with aSAH. Methods: Patients with aSAH over a two-year period were retrospectively analyzed. Baseline characteristics, outcomes, and TCD velocities in bilateral middle cerebral arteries (MCA) for hospital days 2 to14 were recorded. TCD variables, including absolute velocity and change in velocity, were obtained by creating a smoothing curve. A variable representing change in TCD velocity was then created through a linear regression model that confirmed greatest change in velocity associated with DCI occurred at days 2-7. Multivariate logistic regression analysis using DCI as outcome was then completed. Results: 95 patients with aSAH were evaluated. Increased TCD velocity at days 2-7 proved to be a better predictor for DCI than absolute velocity with an optimal cutoff of 8.9 cm/sec/day ( p = 0.019) and AUC 0.651. Multivariate logistic analysis using DCI as the outcome showed that poor admission Hunt-Hess scores (OR 5.02, 95%CI 1.22-22.67, p = 0.028) and increase in TCD velocity during days 2-7 (OR 5.32, 95%CI 1.41-23.33, p = 0.018) were independently associated with DCI. Conclusions: We found that relative increases in TCD velocities in the MCAs during the first 7 days (threshold increase of 8.9 cm/sec/day or 53.4 cm/sec from days 2-7) after aSAH were independently associated with DCI. Our findings suggest that vasospasm should be confirmed and treated aggressively when detected via increased TCD velocities during the first seven days in order to minimize DCI. This association requires independent confirmation.


Stroke ◽  
2009 ◽  
Vol 40 (11) ◽  
pp. 3493-3498 ◽  
Author(s):  
Jan Willem Dankbaar ◽  
Nicolien K. de Rooij ◽  
Birgitta K. Velthuis ◽  
Catharina J.M. Frijns ◽  
Gabriel J.E. Rinkel ◽  
...  

Author(s):  
Katrina Hannah D. Ignacio ◽  
Jose Danilo B. Diestro ◽  
Clare Angeli G. Enriquez ◽  
Juan Silvestre G. Pascual ◽  
Jose Miguel M. Medrano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document