Assessment of the Influence of Navigated Transcranial Magnetic Stimulation on Surgical Planning for Tumors in or Near the Motor Cortex

Neurosurgery ◽  
2011 ◽  
Vol 70 (5) ◽  
pp. 1248-1257 ◽  
Author(s):  
Thomas Picht ◽  
Juliane Schulz ◽  
Michael Hanna ◽  
Sein Schmidt ◽  
Olaf Suess ◽  
...  

Abstract BACKGROUND: Brain tumor surgery near the motor cortex requires careful planning to achieve the optimal balance between completeness of tumor resection and preservation of motor function. Navigated transcranial magnetic stimulation (nTMS) can be used to map functionally essential motor areas preoperatively. OBJECTIVE: To evaluate how much influence, benefit, and impact nTMS has on the surgical planning for tumors near the motor cortex. METHODS: This study reviewed the records of 73 patients with brain tumors in or near the motor cortex, mapped preoperatively with nTMS. The surgical team prospectively classified how much influence the nTMS results had on the surgical planning. Stepwise regression analysis was used to explore which factors predict the amount of influence, benefit, and impact nTMS has on the surgical planning. RESULTS: The influence of nTMS on the surgical planning was as follows: it confirmed the expected anatomy in 22% of patients, added knowledge that was not used in 23%, added awareness of high-risk areas in 27%, modified the approach in 16%, changed the planned extent of resection in 8%, and changed the surgical indication in 3%. CONCLUSION: nTMS had an objective benefit on the surgical planning in one fourth of the patients and a subjective benefit in an additional half of the patients. It had an impact on the surgery itself in just more than half of the patients. By mapping the spatial relationship between the tumor and functional motor cortex, nTMS improves surgical planning for tumors in or near the motor cortex.

Neurosurgery ◽  
2011 ◽  
Vol 68 (5) ◽  
pp. 1317-1325 ◽  
Author(s):  
Marie-Thérèse Forster ◽  
Elke Hattingen ◽  
Christian Senft ◽  
Thomas Gasser ◽  
Volker Seifert ◽  
...  

Abstract BACKGROUND: Tumor resection in the vicinity of the motor cortex poses a challenge to all neurosurgeons. For preoperative assessment of eloquent cortical areas, functional magnetic resonance imaging (fMRI) is used, whereas intraoperatively, direct cortical stimulation (DCS) is performed. Navigated transcranial magnetic stimulation (nTMS) is comparable to DCS in activating cortical pyramidal neurons. OBJECTIVE: To evaluate the reliability of nTMS compared with fMRI and DCS for preoperative resection planning of centrally located tumors. METHODS: In a prospective series, 11 patients (ages, 20-63 years; mean, 41.9 ± 14.9 years, 2 women) with tumors located in or adjacent to the motor cortex were evaluated for surgery. fMRI and nTMS were applied for preoperative assessment of the extent of tumor resection. A 3-dimensional anatomic data set with superimposed fMRI data was integrated in the eXimia Navigated Brain Stimulation station for ensuing motor cortex mapping by nTMS. Responses from nTMS were evaluated by electromyographic response. During surgery, the coordinates of each DCS site were unambiguously defined and integrated into neuronavigation. A post hoc comparison of the coordinates of nTMS, fMRI, and DCS was performed. RESULTS: Distances from nTMS to DCS (10.5 ± 5.67 mm) were significantly smaller than those from fMRI to DCS (15.0 ± 7.6 mm). CONCLUSION: nTMS anticipates information usually only enabled by DCS and therefore allows surgical planning in eloquent cortex surgery.


2020 ◽  
Vol 132 (4) ◽  
pp. 1033-1042 ◽  
Author(s):  
Nico Sollmann ◽  
Alessia Fratini ◽  
Haosu Zhang ◽  
Claus Zimmer ◽  
Bernhard Meyer ◽  
...  

OBJECTIVENavigated transcranial magnetic stimulation (nTMS) in combination with diffusion tensor imaging fiber tracking (DTI FT) is increasingly used to locate subcortical language-related pathways. The aim of this study was to establish nTMS-based DTI FT for preoperative risk stratification by evaluating associations between lesion-to-tract distances (LTDs) and aphasia and by determining a cut-off LTD value to prevent surgery-related permanent aphasia.METHODSFifty patients with left-hemispheric, language-eloquent brain tumors underwent preoperative nTMS language mapping and nTMS-based DTI FT, followed by tumor resection. nTMS-based DTI FT was performed with a predefined fractional anisotropy (FA) of 0.10, 0.15, 50% of the individual FA threshold (FAT), and 75% FAT (minimum fiber length [FL]: 100 mm). The arcuate fascicle (AF), superior longitudinal fascicle (SLF), inferior longitudinal fascicle (ILF), uncinate fascicle (UC), and frontooccipital fascicle (FoF) were identified in nTMS-based tractography, and minimum LTDs were measured between the lesion and the AF and between the lesion and the closest other subcortical language-related pathway (SLF, ILF, UC, or FoF). LTDs were then associated with the level of aphasia (no/transient or permanent surgery-related aphasia, according to follow-up examinations).RESULTSA significant difference in LTDs was observed between patients with no or only surgery-related transient impairment and those who developed surgery-related permanent aphasia with regard to the AF (FA = 0.10, p = 0.0321; FA = 0.15, p = 0.0143; FA = 50% FAT, p = 0.0106) as well as the closest other subcortical language-related pathway (FA = 0.10, p = 0.0182; FA = 0.15, p = 0.0200; FA = 50% FAT, p = 0.0077). Patients with surgery-related permanent aphasia showed the lowest LTDs in relation to these tracts. Thus, LTDs of ≥ 8 mm (AF) and ≥ 11 mm (SLF, ILF, UC, or FoF) were determined as cut-off values for surgery-related permanent aphasia.CONCLUSIONSnTMS-based DTI FT of subcortical language-related pathways seems suitable for risk stratification and prediction in patients suffering from language-eloquent brain tumors. Thus, the current role of nTMS-based DTI FT might be expanded, going beyond the level of being a mere tool for surgical planning and resection guidance.


Author(s):  
Severin Schramm ◽  
Aashna Mehta ◽  
Kurtis I. Auguste ◽  
Phiroz E. Tarapore

OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy. METHODS A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses. RESULTS Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0–17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients). CONCLUSIONS Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.


Sign in / Sign up

Export Citation Format

Share Document