scholarly journals Germline competent mesoderm: the substrate for vertebrate germline and somatic stem cells?

Biology Open ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Aaron M. Savage ◽  
Ramiro Alberio ◽  
Andrew D. Johnson

ABSTRACT In vitro production of tissue-specific stem cells [e.g. haematopoietic stem cells (HSCs)] is a key goal of regenerative medicine. However, recent efforts to produce fully functional tissue-specific stem cells have fallen short. One possible cause of shortcomings may be that model organisms used to characterize basic vertebrate embryology (Xenopus, zebrafish, chick) may employ molecular mechanisms for stem cell specification that are not conserved in humans, a prominent example being the specification of primordial germ cells (PGCs). Germ plasm irreversibly specifies PGCs in many models; however, it is not conserved in humans, which produce PGCs from tissue termed germline-competent mesoderm (GLCM). GLCM is not conserved in organisms containing germ plasm, or even in mice, but understanding its developmental potential could unlock successful production of other stem cell types. GLCM was first discovered in embryos from the axolotl and its conservation has since been demonstrated in pigs, which develop from a flat-disc embryo like humans. Together these findings suggest that GLCM is a conserved basal trait of vertebrate embryos. Moreover, the immortal nature of germ cells suggests that immortality is retained during GLCM specification; here we suggest that the demonstrated pluripotency of GLCM accounts for retention of immortality in somatic stem cell types as well. This article has an associated Future Leaders to Watch interview with the author of the paper.

2021 ◽  
Vol 13 (4) ◽  
pp. 337-49
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Aging tissues lose their homeostatic and regenerative capacities, which has been linked to the degeneration of the stem cells such as the tissue-specific stem cells, the stem cell niches, and systemic cues that regulate stem cell activity.CONTENT: The maintenance of tissue homeostatic and regeneration dependent on its tissue-specific stem cells, that —long-lived cells with the ability to self-renew and differentiate into mature cells. Understanding the molecular mechanisms that governs stem cell survival, self-renewal, quiescence, proliferation, and commitment to specific differentiated cell lineages is critical for identifying the drivers and effectors of age-associated stem cell failure. Such understanding will be critical for the development of therapeutic approaches that can decrease, and possibly reverse and repair the age-related degenerative process in aging tissues.SUMMARY: The exact mechanisms and reasons of aging process were not fully elucidated until now. Stem cells is one of the keys for maintaining tissues heath and understanding how stem cell decline with age will give us opportunities to find strategy in increasing somatic stem cells regenerative capacity and delay the aging process.KEYWORDS: adult stem cell, aging, epigenetic, metabolism, quiescence, senescence


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 255 ◽  
Author(s):  
Miruna Mihaela Micheu ◽  
Alina Ioana Scarlatescu ◽  
Alexandru Scafa-Udriste ◽  
Maria Dorobantu

Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.


2017 ◽  
Vol 373 (1739) ◽  
pp. 20160494 ◽  
Author(s):  
Rumiko Kofuji ◽  
Yasushi Yagita ◽  
Takashi Murata ◽  
Mitsuyasu Hasebe

Stem cells self-renew and produce precursor cells that differentiate to become specialized cell types. Land plants generate several types of stem cells that give rise to most organs of the plant body and whose characters determine the body organization. The moss Physcomitrella patens forms eight types of stem cells throughout its life cycle. Under gametangium-inducing conditions, multiple antheridium apical stem cells are formed at the tip of the gametophore and each antheridium apical stem cell divides to form an antheridium. We found that the gametophore apical stem cell, which typically forms leaf and stem tissues, changes to become a new type of stem cell, which we term the antheridium initial stem cell. This antheridium initial stem cell produces multiple antheridium apical stem cells, resulting in a cluster of antheridia at the tip of gametophore. This is the first report of a land plant stem cell directly producing another type of stem cell during normal development. Notably, the antheridium apical stem cells are distally produced from the antheridium initial stem cell, similar to the root cap stem cells of vascular plants, suggesting the use of similar molecular mechanisms and a possible evolutionary relationship. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.


2021 ◽  
pp. 90-108
Author(s):  
Jonathan Slack

‘Therapy using tissue-specific stem cells’ begins with haematopoietic stem cell transplantation (HSCT), which is considered the most important type of stem cell therapy. HSCT covers the transplantation of bone marrow and other types of transplant where the blood-forming stem cells of the graft come from non-marrow sources. It is used mostly for the treatment of leukaemias and lymphomas. Some genetic diseases of the blood have also been successfully treated using allogeneic HSCT. There are also other examples of cell therapy using tissue-specific stem cells, such as epidermal cells for the treatment of burns and limbal (corneal) stem cells for treatment of eye injuries.


Author(s):  
Andrea Keller ◽  
Tyus Temple ◽  
Behnam Sayanjali ◽  
Maria M. Mihaylova

AbstractPurpose of ReviewFrom invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging.Recent FindingsOver the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking.SummaryIn this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. sci-3-sci-3
Author(s):  
Amy J. Wagers ◽  
Massimiliano Cerletti ◽  
Shane R. Mayack ◽  
Francis S. Kim ◽  
Jennifer L. Shadrach

Abstract Aging of multicellular organisms typically involves progressive decline in the body’s ability to maintain homeostatic cell replacement and to regenerate tissues and organs after injury. In both the blood and the skeletal muscle, aging significantly impairs regenerative activity and can dysregulate normal homeostatic production of mature cells. These age-acquired defects in tissue function profoundly impact the health of older individuals, as evidenced by the high incidence of age-related muscle deterioration (sarcopenia), bone marrow failure, immune dysfunction, and blood cancers in the elderly. How aging causes deterioration of tissue function is poorly understood, but several lines of evidence suggest that loss or functional impairment of tissue-specific stem cells directly contributes to age-dependent failures in tissue repair. Interestingly, the effects of aging on tissue stem cell function appear to arise at least in part from alterations in the aged tissue environment, which can inhibit stem cell activity in older animals and may be regulated by factors that circulate naturally in the bloodstream. By making use of sensitive in vivo and in vitro approaches, including direct cell isolation by FACS, we are investigating the extrinsic factors and interactions that control stem cell function in aged animals. Our current studies have pointed us toward a discrete set of metabolic regulators and inflammatory cytokines, which may alter the signals that stem cells receive from their environment in aged animals. The knowledge we gain from these ongoing studies will help to define novel strategies to delay or reverse the onset of age-related disease, extending the healthful life of aging individuals.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Melissa Medeiros Markoski

Today, several veterinary diseases may be treated with the administration of stem cells. This is possible because these cells present a high therapeutic potential and may be injected as autologous or allogenic, freshly isolated, or previously cultured. The literature supports that the process is safe and brings considerable benefits to animal health. Knowledge about how adult stem cells modulate the molecular signals to activate cell homing has also been increasingly determined, evidencing the mechanisms which enable cells to repair and regenerate injured tissues. Preclinical studies were designed for many animal models and they have contributed to the translation to the human clinic. This review shows the most commonly used stem cell types, with emphasis on mesenchymal stem cells and their mechanistic potential to repair, as well as the experimental protocols, studied diseases, and species with the highest amount of studies and applications. The relationship between stem cell protocols utilized on clinics, molecular mechanisms, and the physiological responses may offer subsidies to new studies and therefore improve the therapeutic outcome for both humans and animals.


Sign in / Sign up

Export Citation Format

Share Document