scholarly journals Novel protocol to observe the intestinal tuft cell using transmission electron microscopy

Biology Open ◽  
2022 ◽  
Author(s):  
Takuma Kozono ◽  
Miwa Tamura-Nakano ◽  
Yuki I. Kawamura ◽  
Takashi Tonozuka ◽  
Atsushi Nishikawa

Tuft cell is a chemosensory cell, a specific cell type sharing the taste transduction system with a taste cell on the tongue, of which the existence has been known in various tissues such as gastrointestinal tract, gall bladder, trachea, pancreatic duct, etc. To date, electron microscopic approaches have shown various morphological features of the tuft cell such as long and thick microvilli, tubulovesicular network at the apical side, prominent skeleton structures, etc. Recently, it has been reported that the small intestinal tuft cell functions to initiate type2 immunity in response to helminth infection. However, the mechanisms by which such distinguished structures are involved with the physiological functions are poorly understood. To address this question, the combination of physiological study regarding the tuft cells using genetic models and its morphological study using electron microscopy will be required. However, it is a challenge to observe tuft cells by electron microscopy due to their extremely low frequency on the epithelium. Therefore, in this paper, we suggest the advanced protocol to observe the small intestinal tuft cell efficiently by transmission electron microscopy using serial semi-thin sections on the Aclar film.

Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).


Further experiments by transmission electron microscopy on thin sections of stainless steel deformed by small amounts have enabled extended dislocations to be observed directly. The arrangement and motion of whole and partial dislocations have been followed in detail. Many of the dislocations are found to have piled up against grain boundaries. Other observations include the formation of wide stacking faults, the interaction of dislocations with twin boundaries, and the formation of dislocations at thin edges of the foils. An estimate is made of the stacking-fault energy from a consideration of the stresses present, and the properties of the dislocations are found to be in agreement with those expected from a metal of low stacking-fault energy.


Clay Minerals ◽  
1987 ◽  
Vol 22 (2) ◽  
pp. 179-185 ◽  
Author(s):  
T. Imbert ◽  
A. Desprairies

AbstractTransmission electron microscopy of ultramicrotomed thin-sections of Pleistocene and Eocene glass shards revealed the neoformation of (i) illite and (ii) halloysite at the glass periphery. According to previous experimental studies, halloysite neoformation in marine environments can occur on glass shards deposited in Si-rich sediments; an excess of Ca tends to inhibit the reaction.


2010 ◽  
Vol 22 (2) ◽  
pp. 405 ◽  
Author(s):  
Ingrid Walter ◽  
Waltraud Tschulenk ◽  
Sven Budik ◽  
Christine Aurich

The present study gives a detailed ultrastructural description of equine conceptuses at Day 14 (n = 2) and Day 16 (n = 3) after ovulation. Whereas on Day 14 only primitive structures were seen, on Day 16 neurulation and formation of mesodermal somites had taken place. The ectoderm of the embryo itself and the surrounding trophoblast ectodermal cells were characterised by specific cell surface differentiations. At the embryonic ectodermal cell surface (14 and 16 days) remarkable protruded and fused cytoplasmic projections were seen, typically associated with macropinocytotic events involved in macromolecule and fluid uptake. This finding adds an important point to the expansion mode of the hypotone equine conceptus, which is characterised by ‘uphill’ fluid uptake. Numerous microvilli and coated endocytotic pits at the apical trophoblast membrane emphasised its absorptive character. Endodermal cells were arranged loosely with only apically located cellular junctions leaving large intercellular compartments. At the border of the embryonic disc apoptotic cells were regularly observed indicating high remodelling activities in this area. Conspicuous blister-like structures between ectoderm and mesoderm were seen in the trilaminar part of Day-14 and -16 conceptuses. These were strictly circumscribed despite not being sealed by cellular junctions between germinal layers. It is possible that these blisters are involved in embryo positioning; however, further studies are needed to verify this.


1981 ◽  
Vol 44 (335) ◽  
pp. 357-359 ◽  
Author(s):  
D. J. Barber

The advantages of polished ultra-thin sections (PUTS) in the study of very fine-grained materials, such as occur in some meteorites, have been illustrated by Fredriksson et al. (1978) whose technique is based on the earlier work of Beauchamp and WiUiford (1974). An essential feature of such methods for friable and heterogeneous materials is the use of a medium, usually an epoxy resin, to consolidate and partially impregnate them. Normally one polished side of the specimen is bonded to a glass slide during preparation, and the finished PUTS are integral with the slide on completion. PUTS are typically 2-5 microns in thickness.


1975 ◽  
Vol 21 (3) ◽  
pp. 252-262 ◽  
Author(s):  
D. L. Balkwill ◽  
D. P. Labeda ◽  
L. E. Casida Jr.

A simplified procedure is presented for releasing and concentrating indigenous microbial cells from soil for viewing by transmission electron microscopy as thin sections or replicas of frozen-etched preparations. This procedure is compared with two others reported earlier, and their relative merits are discussed as concerns the choice of procedure for the cellular information desired from the soil. Freeze-etching showed that the cell types and size distributions for cells which have been released and concentrated from soil are in general agreement with those for cells in a crude soil slurry in which no attempt to release and concentrate cells was made. Microcolonies were present both in the crude slurry and in the discard soil debris centrifugation pellets from the cell release and concentration procedures. In contrast to the historic assumptions, these microcolonies, as well as some individual cells embedded in soil debris could not be broken up and (or) dislodged so that they would be washed from the soil. The relative numbers of these cells remaining with the soil debris, however, could not be quantitated in the present study.


2003 ◽  
Vol 88 (4) ◽  
pp. 1903-1906 ◽  
Author(s):  
Alessandro Riva ◽  
Felice Loffredo ◽  
Alessandro Uccheddu ◽  
Francesca Testa Riva ◽  
Bernard Tandler

By taking advantage of a modified osmium maceration technique, we have been able to examine by high resolution scanning electron microscopy (HRSEM) the interior of human adrenocortical mitochondria from which all soluble material has been extracted. The so-called vesicles apparent in thin sections examined by transmission electron microscopy actually are finger-like cristae as determined by HRSEM. These digitiform cristae have a segmented appearance and a bulbous tip. The segmented form of the cristae may have important metabolic implications.


2005 ◽  
Vol 11 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Rodrigo Cardoso Magno ◽  
Lorian Cobra Straker ◽  
Wanderley de Souza ◽  
Marcia Attias

Toxoplasma gondii, the causative agent of toxoplasmosis, is capable of actively penetrating and multiplying in any nucleated cell of warm-blooded animals. Its survival strategies include escape from fusion of the parasitophorous vacuole with host cell lysosomes and rearrangement of host cell organelles in relation to the parasitophorous vacuole. In this article we report the rearrangement of host cell organelles and elements of the cytoskeleton of LLCMK2 cells, a lineage derived from green monkey kidney epithelial cells, in response to infection byT. gondiitachyzoites. Transmission electron microscopy made on flat embedded monolayers cut horizontally to the apical side of the cells or field emission scanning electron microscopy of monolayers scraped with scotch tape before sputtering showed that association of mitochondria to the vacuole is much less frequent than previously described. On the other hand, all parasitophorous vacuoles were surrounded by elements of the endoplasmic reticulum. These data were complemented by observations by laser scanning microscopy using fluorescent probes from mitochondria and endoplasmic reticulum and reinforced by three-dimensional reconstruction from serial sections observed by transmission electron microscopy and labeling of mitochondria and endoplasmic reticulum by fluorescent probes.


Sign in / Sign up

Export Citation Format

Share Document