scholarly journals Kinematics of sea star legged locomotion

Author(s):  
Olaf Ellers ◽  
Melody Khoriaty ◽  
Amy S. Johnson

Sea stars have slower crawling and faster bouncing gaits. Both speed and oscillation amplitude increase during the transition from crawling to oscillating. In the bouncy gait, oscillating vertical velocities precede oscillating horizontal velocities by 90 degrees, as reflected by clockwise circular hodographs. Potential energy precedes horizontal kinetic energy by 9.6 degrees and so are nearly in phase. These phase relationships resemble terrestrial running gaits, except that podia are always on the ground. Kinetic and potential energy scale as mass1.1, with the change in kinetic energy consistently two orders of magnitude less, indicating that efficient exchange is not feasible. Frequency of the bouncy gait scales with mass−0.14, which is similar to continuously running vertebrates and indicates that gravitational forces are important. This scaling differs from the Hill model, in which scaling of muscle forces determine frequency. We propose a simple torque stabilized inverted pendulum (TS-IP) model to conceptualize the dynamics of this gait. The TS-IP model incorporates mathematics equivalent to an angular spring, but implemented by a nearly constant upward force generated by the podia in each step. That upward force is just larger than the force required to sustain the underwater weight of the sea star. Even though the bouncy gait is the rapid gait for these sea stars, the pace of movement is still very slow. In fact, the observed Froude numbers (10−2 to 10−3) are much lower than those typical of vertebrate locomotion and are as low or lower than those reported for slow walking fruit flies, which are the lowest values for pedestrian Froude numbers of which we are aware.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark Hermes ◽  
Mitul Luhar

AbstractIntertidal sea stars often function in environments with extreme hydrodynamic loads that can compromise their ability to remain attached to surfaces. While behavioral responses such as burrowing into sand or sheltering in rock crevices can help minimize hydrodynamic loads, previous work shows that sea stars also alter body shape in response to flow conditions. This morphological plasticity suggests that sea star body shape may play an important hydrodynamic role. In this study, we measured the fluid forces acting on surface-mounted sea star and spherical dome models in water channel tests. All sea star models created downforce, i.e., the fluid pushed the body towards the surface. In contrast, the spherical dome generated lift. We also used Particle Image Velocimetry (PIV) to measure the midplane flow field around the models. Control volume analyses based on the PIV data show that downforce arises because the sea star bodies serve as ramps that divert fluid away from the surface. These observations are further rationalized using force predictions and flow visualizations from numerical simulations. The discovery of downforce generation could explain why sea stars are shaped as they are: the pentaradial geometry aids attachment to surfaces in the presence of high hydrodynamic loads.


Author(s):  
I.P. POPOV

A mechanical oscillatory system with homogeneous elements, namely, with n massive loads (multi– inert oscillator), is considered. The possibility of the appearance of free harmonic oscillations of loads in such a system is shown. Unlike the classical spring pendulum, the oscillations of which are due to the mutual conversion of the kinetic energy of the load into the potential energy of the spring, in a multi–inert oscillator, the oscillations are due to the mutual conversion of only the kinetic energies of the goods. In this case, the acceleration of some loads occurs due to the braking of others. A feature of the multi–inert oscillator is that its free oscillation frequency is not fixed and is determined mainly by the initial conditions. This feature can be very useful for technical applications, for example, for self–neutralization of mechanical reactive (inertial) power in oscillatory systems.


2021 ◽  
Vol 57 (1) ◽  
pp. 015012
Author(s):  
Unofre B Pili ◽  
Renante R Violanda

Abstract The video of a free-falling object was analysed in Tracker in order to extract the position and time data. On the basis of these data, the velocity, gravitational potential energy, kinetic energy, and the work done by gravity were obtained. These led to a rather simultaneous validation of the conservation law of energy and the work–energy theorem. The superimposed plots of the kinetic energy, gravitational potential energy, and the total energy as respective functions of time and position demonstrate energy conservation quite well. The same results were observed from the plots of the potential energy against the kinetic energy. On the other hand, the work–energy theorem has emerged from the plot of the total work-done against the change in kinetic energy. Because of the accessibility of the setup, the current work is seen as suitable for a home-based activity, during these times of the pandemic in particular in which online learning has remained to be the format in some countries. With the guidance of a teacher, online or face-to-face, students in their junior or senior high school—as well as for those who are enrolled in basic physics in college—will be able to benefit from this work.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


2017 ◽  
Vol 32 (1) ◽  
pp. 39-51
Author(s):  
Zayra Christine Sátyro ◽  
José Veiga

Abstract This study focuses on the quantification and evaluation of the effects of ENSO (El Niño Southern Oscillation) warm phases, using a composite of five intense El Niño episodes between 1979 – 2011 on the Energetic Lorenz Cycle for four distinct regions around the globe: 80° S – 5° N (region 1), 50° S – 5° N (region 2), 30° S – 5° N (region 3), and 30° S – 30° N (region 4), using Data from NCEP reanalysis-II. Briefly, the results showed that zonal terms of potential energy and kinetic energy were intensified, except for region 1, where zonal kinetic energy weakened. Through the analysis of the period in which higher energy production is observed, a strong communication between the available zonal potential and the zonal kinetic energy reservoirs can be identified. This communication weakened the modes linked to eddies of potential energy and kinetic energy, as well as in the other two baroclinic conversions terms. Furthermore, the results indicate that for all the regions, the system itself works to regain its stable condition.


2020 ◽  
Vol 50 (11) ◽  
pp. 3205-3217
Author(s):  
Carl Wunsch

AbstractA recent paper by Hu et al. (https://doi.org/10.1126/sciadv.aax7727) has raised the interesting question of whether the ocean circulation has been “speeding up” in the last decades. Their result contrasts with some estimates of the lack of major trends in oceanic surface gravity waves and wind stress. In general, both the increased energy and implied power inputs of the calculated circulation correspond to a small fraction of the very noisy background values. An example is the implied power increase of about 3 × 108 W, as compared to wind energy inputs of order 1012 W. Here the problem is reexamined using a state estimate that has the virtue of being energy, mass, etc. conserving. Because it is an estimate over an entire recent 26-yr interval, it is less sensitive to the strong changes in observational data density and distribution, and it does not rely upon nonconservative “reanalyses.” The focus is on the energy lying in the surface layers of the ocean. A potential energy increase is found, but it is almost completely unavailable—arising from the increase in mean sea level. A weak increase in kinetic energy in the top layer (10 m) is confirmed, corresponding to an increase of order 1 cm s−1 yr−1 over 26 years. An estimate of kinetic energy in the full water column shows no monotonic trend, but the changes in the corresponding available potential energy are not calculated here.


2021 ◽  
Author(s):  
Paul M. Bellan

<p>The interaction between a circularly polarized electromagnetic wave and an energetic gyrating particle is described [1] using a relativistic pseudo-potential that is a function of the frequency mismatch,  a measure of the extent to which ω-k<sub>z</sub>v<sub>z</sub>=Ω/γ is not true. The description of this wave-particle interaction involves a sequence of relativistic transformations that ultimately demonstrate that the pseudo potential energy of a pseudo particle adds to a pseudo kinetic energy giving a total pseudo energy that is a constant of the motion. The pseudo kinetic energy is proportional to the square of the particle acceleration (compare to normal kinetic energy which is the square of a velocity) and the pseudo potential energy is a function of the mismatch and so effectively a function of the particle velocity parallel to the background magnetic field (compare to normal potential energy which is a function of position). Analysis of the pseudo-potential provides a means for interpreting particle motion in the wave in a manner analogous to the analysis of a normal particle bouncing in a conventional potential well.  The wave-particle  interaction is electromagnetic and so differs from and is more complicated than the well-known Landau damping of electrostatic waves.  The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves are discussed. Extension to the situation of a distribution of relativistic particles is presented in a companion talk [2].</p><p>[1] P. M. Bellan, Phys. Plasmas 20, Art. No. 042117 (2013)</p><p>[2] Y. D. Yoon and P. M. Bellan, JGR 125, Art. No. e2020JA027796 (2020)</p>


Sign in / Sign up

Export Citation Format

Share Document