scholarly journals Evoked auditory potentials from African mole-rats and coruros reveal disparity in subterranean rodent hearing

Author(s):  
Kai R. Caspar ◽  
Alexandra Heinrich ◽  
Lea Mellinghaus ◽  
Patricia Gerhardt ◽  
Sabine Begall

Hearing in subterranean rodents exhibits numerous peculiarities, including low sensitivity and restriction to a narrow range of comparatively low frequencies. Past studies provided two conflicting hypotheses explaining how these derived traits evolved: structural degeneration and adaptive specialization. To further elucidate this issue, we recorded auditory brainstem responses from three species of social subterranean rodents that differ in the degree of specialization to the underground habitat: The naked mole-rat (Heterocephalus glaber) and the Mashona mole-rat (Fukomys darlingi) which represent the ancient lineage of African mole-rats (Bathyergidae) and the coruro (Spalacopus cyanus), a South American rodent (Octodontidae) which adopted a subterranean lifestyle in more recent geological time. Additionally, we measured call amplitudes of social vocalizations to study auditory vocal coupling. We found elevated auditory thresholds and severe low-frequency hearing range restrictions in the African mole-rats, with hearing in naked mole-rats tending to be more sensitive than in Mashona mole-rats. In contrast to that, hearing in coruros was similar to that of epigeic rodents, with its range extending into ultrasonic frequencies. However, as in the mole-rats, the coruros’ region of best hearing was located at low frequencies close to 1 kHz. We argue that the auditory sensitivity of African mole-rats, although remarkably poor, has been underestimated by recent studies, while data on coruros conform to previous results. Considering the available evidence, we propose to be open to both degenerative and adaptive interpretations of hearing physiology in subterranean mammals, as each may provide convincing explanations for specific auditory traits observed.

2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


1984 ◽  
Vol 23 (1) ◽  
pp. 75-84 ◽  
Author(s):  
M. Maurizi ◽  
G. Paludetti ◽  
F. Ottaviani ◽  
M. Rosignoli

2016 ◽  
Vol 202 (12) ◽  
pp. 859-868 ◽  
Author(s):  
Klaus Lucke ◽  
Gordon D. Hastie ◽  
Kerstin Ternes ◽  
Bernie McConnell ◽  
Simon Moss ◽  
...  

2019 ◽  
Vol 381 ◽  
pp. 107774
Author(s):  
Mathias Benjamin Voigt ◽  
Christian Hackenbroich ◽  
Hans-Heinrich Krüger ◽  
Arne Liebau ◽  
Karl-Heinz Esser

1994 ◽  
Vol 37 (2) ◽  
pp. 136-141
Author(s):  
Toshifumi Sakata ◽  
Akihide Imamura ◽  
Nobuhide Imamura ◽  
Yuji Suoya ◽  
Kimio Shiraishi ◽  
...  

2004 ◽  
Vol 118 (2) ◽  
pp. 117-122 ◽  
Author(s):  
P. E. Campbell ◽  
C. M. Harris ◽  
S. Hendricks ◽  
T. Sirimanna

The contribution of air conduction auditory brainstem response (AC-ABR) testing in the paediatric population is widely accepted in clinical audiology. However, this does not allow for differentiation between conductive and sensorineural hearing loss. The purpose ofthis paper is to review the role of bone conduction auditory brainstem responses (BC-ABR). It is argued that despite such technical difficulties as a narrow dynamic range, masking dilemmas, stimulus artifact and low frequency underestimation of hearing loss, considerable evidence exists to suggest that BC-ABR testing provides an important contribution in the accurate assessmentof hearing loss in infants. Modification of the BC-ABR protocol is discussed and the technical difficulties that may arise are addressed, permitting BC-ABR to be used as a tool in the differential diagnosis between conductive and sensorineural hearing. Two relevant case studies are presented to highlight the growing importance of appropriate management in early identification of hearing loss. It can be concluded that BC-ABR should be adopted as a routine clinical diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document