TRPV2 Promotes Cell Migration and Invasion in Gastric Cancer via the Transforming Growth Factor-β Signaling Pathway

Author(s):  
Shunji Kato ◽  
Atsushi Shiozaki ◽  
Michihiro Kudou ◽  
Hiroki Shimizu ◽  
Toshiyuki Kosuga ◽  
...  
2008 ◽  
Vol 28 (22) ◽  
pp. 6773-6784 ◽  
Author(s):  
William Kong ◽  
Hua Yang ◽  
Lili He ◽  
Jian-jun Zhao ◽  
Domenico Coppola ◽  
...  

ABSTRACT Transforming growth factor β (TGF-β) signaling facilitates metastasis in advanced malignancy. While a number of protein-encoding genes are known to be involved in this process, information on the role of microRNAs (miRNAs) in TGF-β-induced cell migration and invasion is still limited. By hybridizing a 515-miRNA oligonucleotide-based microarray library, a total of 28 miRNAs were found to be significantly deregulated in TGF-β-treated normal murine mammary gland (NMuMG) epithelial cells but not Smad4 knockdown NMuMG cells. Among upregulated miRNAs, miR-155 was the most significantly elevated miRNA. TGF-β induces miR-155 expression and promoter activity through Smad4. The knockdown of miR-155 suppressed TGF-β-induced epithelial-mesenchymal transition (EMT) and tight junction dissolution, as well as cell migration and invasion. Further, the ectopic expression of miR-155 reduced RhoA protein and disrupted tight junction formation. Reintroducing RhoA cDNA without the 3′ untranslated region largely reversed the phenotype induced by miR-155 and TGF-β. In addition, elevated levels of miR-155 were frequently detected in invasive breast cancer tissues. These data suggest that miR-155 may play an important role in TGF-β-induced EMT and cell migration and invasion by targeting RhoA and indicate that it is a potential therapeutic target for breast cancer intervention.


Author(s):  
Haibo Wang ◽  
Zewen Chu ◽  
Shiya Ou ◽  
Tengyang Ni ◽  
Xiaojun Dai ◽  
...  

Background: Gastric cancer is the fifth most common tumor and has the third-highest mortality rate among various malignant tumors, and the survival rate of patients is low. Celastrus orbiculatus extract (COE) has been shown to inhibit the activity of a variety of tumors. In this study, we examined the inhibition of the epithelial-mesenchymal transition (EMT) process in gastric cancer cells by COE through the transforming growth factor-β(TGF-β) signaling pathway. Methods: COE was first diluted to various concentrations and then used to treat SGC-7901, BGC-823, MGC-803, and AGS cells. Cell proliferation was assessed by an MTT (thiazole blue) assay. Transwell assays were used to assess cell invasion and migration. The high-content imaging technology was used to further observe the effects of the drug on cell invasion and migration. Western blotting was used to assess the effects of the drug on the expression of EMT and Smad2/3 signaling pathway-related proteins. Results: We found that COE inhibited the migration and invasion of AGS gastric cancer cells in a dose-dependent manner. Consequently, COE decreased the expression of EMT-related proteins and proteins related to the Smad2/3 signaling pathway in gastric cancer cells, inhibiting the migration and invasion of gastric cancer cells, and this effect occurred through the TGF-β signaling pathway. Summary: We investigated that COE could inhibit the proliferation of gastric cancer cells and inhibit invasion and metastasis by inhibiting the EMT process at the molecular level and its effect on the TGF-β signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document