scholarly journals A New Method of Preparing θ-Alumina and the Interpretation of Its X-Ray-powder Diffraction Pattern and Electron Diffraction Pattern

1970 ◽  
Vol 43 (8) ◽  
pp. 2487-2491 ◽  
Author(s):  
Goro Yamaguchi ◽  
Itaru Yasui ◽  
Wen-Chau Chiu
Author(s):  
David Cockayne ◽  
David McKenzie

The technique of Electron Reduced Density Function (RDF) analysis has ben developed into a rapid analytical tool for the analysis of small volumes of amorphous or polycrystalline materials. The energy filtered electron diffraction pattern is collected to high scattering angles (currendy to s = 2 sinθ/λ = 6.5 Å-1) by scanning the selected area electron diffraction pattern across the entrance aperture to a GATAN parallel energy loss spectrometer. The diffraction pattern is then converted to a reduced density function, G(r), using mathematical procedures equivalent to those used in X-ray and neutron diffraction studies.Nearest neighbour distances accurate to 0.01 Å are obtained routinely, and bond distortions of molecules can be determined from the ratio of first to second nearest neighbour distances. The accuracy of coordination number determinations from polycrystalline monatomic materials (eg Pt) is high (5%). In amorphous systems (eg carbon, silicon) it is reasonable (10%), but in multi-element systems there are a number of problems to be overcome; to reduce the diffraction pattern to G(r), the approximation must be made that for all elements i,j in the system, fj(s) = Kji fi,(s) where Kji is independent of s.


1970 ◽  
Vol 37 (291) ◽  
pp. 780-789 ◽  
Author(s):  
M. S. Y. Bhatty ◽  
J. A. Gard ◽  
F. P. Glasser

SummaryThe X-ray powder diffraction pattern of synthetic anorthite crystallized from a CaO-Al2O3-SiO2glass having the anorthite (1:1:2) molar ratio is identical with that reported in the literature, and also with that of a natural Japanese anorthite specimen. Increasing the CaO or SiO2content of the parent glasses used for crystallization studies has no measurable effect on that portion of the powder pattern attributable to anorthite. However, glasses containing an excess of Al2O3ranging from 5 to 10 mol % gave, after crystallization at temperatures belowc.1150 °C distinctively different powder pattern. Several powder reflections that are normally strong, such as, etc., were found to be virtually absent. Moreover, the chemical excess of Al2O3did not appear as a separate alumina-bearing phase. Upon reheating these anorthites to temperatures above 1200–50 °C or upon crystallizing a fresh portion of alumina-rich glass above 1200-50 °C, only the normal anorthite powder X-ray pattern was obtained; the pattern also contained some reflections due to corundum (α-Al2O3). Examination of the anomalous low-temperature anorthite by electron diffraction shows that the apparent absence of some powder lines is caused by both albite and Carlsbad twinning, which occur on an intimate scale not exceeding a few unit cell repeats. From the unique manner of its occurrence, the twinning is believed to be associated with the inclusion of an excess of Al3+in the anorthite.


1976 ◽  
Vol 153 (1) ◽  
pp. 139-140 ◽  
Author(s):  
H Chanzy ◽  
J M Franc ◽  
D Herbage

By using the techniques developed by Taylor et al. [(1975) J. Mol. Biol. 92, 165-167] (freezing of the hydrated specimen before its insertion into the electron microscope and keeping it frozen throughout the diffraction experiment), it was possible to obtain a high-angle electron-diffraction pattern from collagen fibrils. This pattern is in good agreement with that obtained by high-angle X-ray diffraction. Electron diffraction will be very useful to study collagen, because the diffraction pattern from a carefully selected area of one fibril is now feasible.


Author(s):  
S.H. Vale

A program has been written for an energy dispersive x-ray microanalysis system computer to identify a sample by combining data from an electron diffraction pattern collected in a TEM with chemical information from the sample. The combined information is compared with a large database held on the computer to find a suitable set of matching compounds.The program was written for a Link Analytical AN10000 microanalysis system which is based on a computer with a 16 bit word length, 20 MHz CPU with 512 kbyte of memory for programs and data, 40 Mbyte hard disk and a 512 × 512 pixel colour image display with its own memory. The database used was the NBS/SANDIA/ICDD electron diffraction database adapted for the AN 10000 computer. This database contains about 70000 compound entries and occupies 9 Mbyte of disk space.


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


2018 ◽  
Vol 90 (11) ◽  
pp. 6436-6444 ◽  
Author(s):  
Frederik Vanmeert ◽  
Wout De Nolf ◽  
Steven De Meyer ◽  
Joris Dik ◽  
Koen Janssens

1999 ◽  
Vol 14 (4) ◽  
pp. 258-260 ◽  
Author(s):  
W. Paszkowicz

X-ray powder diffraction pattern for InN synthesized using a microwave plasma source of nitrogen is reported. The data were obtained with the help of an automated Bragg-Brentano diffractometer using Ni-filtered CuKα radiation. The lattice parameters for the wurtzite-type unit cell are ao=3.5378(1) Å, co=5.7033(1) Å. The calculated density is 6.921±0.002 g/cm3.


2021 ◽  
Vol 59 (6) ◽  
pp. 1833-1863
Author(s):  
Andrew M. McDonald ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
Kirk C. Ross ◽  
Doreen E. Ames ◽  
...  

ABSTRACT Oberthürite, Rh3(Ni,Fe)32S32, and torryweiserite, Rh5Ni10S16, are two new platinum-group minerals discovered in a heavy-mineral concentrate from the Marathon deposit, Coldwell Complex, Ontario, Canada. Oberthürite is cubic, space group , with a 10.066(5) Å, V 1019.9(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.06(100)(311), 2.929(18)(222), 1.9518(39)(115,333), 1.7921(74)(440), 1.3184(15)(137,355) and 1.0312(30)(448). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite–ferhodsite), kotulskite, and mertieite-II, and the base-metal sulfides, chalcopyrite, bornite, millerite, and Rh-bearing pentlandite. Grains of oberthürite are up to 100 × 100 μm and the mineral commonly develops in larger composites with coldwellite, isoferroplatinum, zvyagintsevite, Rh-bearing pentlandite, and torryweiserite. The mineral is creamy brown compared to coldwellite and bornite, white when compared to torryweiserite, and gray when compared chalcopyrite and millerite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 36.2 (470 nm), 39.1 (546 nm), 40.5 (589 nm), and 42.3 (650 nm). The calculated density is 5.195 g/cm3, determined using the empirical formula and the unit-cell parameter from the refined crystal structure. The average result (n = 11) using energy-dispersive spectrometry is: Rh 10.22, Ni 38.83, Fe 16.54, Co 4.12, Cu 0.23 S 32.36, total 100.30 wt.%, which corresponds to (Rh2Ni0.67Fe0.33)Σ3.00(Ni19.30Fe9.09Co2.22Rh1.16Cu0.12)∑31.89S32.11, based on 67 apfu and crystallochemical considerations, or ideally, Rh3Ni32S32. The name is for Dr. Thomas Oberthür, a well-known researcher on alluvial platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Torryweiserite is rhombohedral, space group , with a 7.060(1), c 34.271(7) Å, V 1479.3(1), Z = 3. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.080(33)(021), 3.029(58)(116,0110), 1.9329(30)(036,1115,1210), 1.7797(100)(220,0216), 1.2512(49)(0416), and 1.0226(35)(060,2416,0232). Associated minerals are the same as for oberthürite. The mineral is slightly bluish compared to oberthürite, gray when compared to chalcopyrite, zvyagintsevite, and keithconnite, and pale creamy brown when compared to bornite and coldwellite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 34.7 (470 nm), 34.4 (546 nm), 33.8 (589 nm), and 33.8 (650 nm). The calculated density is 5.555 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 10) using wavelength-dispersive spectrometry is: Rh 28.02, Pt 2.56, Ir 1.98, Ru 0.10, Os 0.10, Ni 17.09, Fe 9.76, Cu 7.38, Co 1.77 S 30.97, total 99.73 wt.%, which corresponds to (Rh4.50Pt0.22Ir0.17Ni0.08Ru0.02Os0.01)∑5.00(Ni4.73Fe2.89Cu1.92Co0.50)Σ10.04S15.96, based on 31 apfu and crystallochemical considerations, or ideally Rh5Ni10S16. The name is for Dr. Thorolf (‘Torry') W. Weiser, a well-known researcher on platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Both minerals have crystal structures similar to those of pentlandite and related minerals: oberthürite has two metal sites that are split relative to that in pentlandite, and torryweiserite has a layered structure, comparable, but distinct, to that developed along [111] in pentlandite. Oberthürite and torryweiserite are thought to develop at ∼ 500 °C under conditions of moderate fS2, through ordering of Rh-Ni-S nanoparticles in precursor Rh-bearing pentlandite during cooling. The paragenetic sequence of the associated Rh-bearing minerals is: Rh-bearing pentlandite → oberthürite → torryweiserite → ferhodsite-series minerals, reflecting a relative increase in Rh concentration with time. The final step, involving the formation of rhodsite-series minerals, was driven via by the oxidation of Fe2+ → Fe3+ and subsequent preferential removal of Fe3+, similar to the process involved in the conversion of pentlandite to violarite. Summary comments are made on the occurrence and distribution of Rh, minerals known to have Rh-dominant chemistries, the potential existence of both Rh3+ and Rh2+, and the crystallochemical factors influencing accommodation of Rh in minerals.


Sign in / Sign up

Export Citation Format

Share Document