scholarly journals Effects Of Acute Exercise And Acupuncture Treatment On Regulation MMPs/TIMPs Balance Of Skeletal Muscle

2021 ◽  
Vol 53 (8S) ◽  
pp. 113-113
Author(s):  
Xiaojuan Gao ◽  
Xiangrui Kong ◽  
Yawen Jiang ◽  
Yue Zhou ◽  
Ruiyuan Wang ◽  
...  
2021 ◽  
Vol 53 (8S) ◽  
pp. 107-107
Author(s):  
YanQiao Cai ◽  
YaWen Jiang ◽  
Yue Zhou ◽  
RuiYuan Wang ◽  
XueLin Zhang ◽  
...  

2004 ◽  
Vol 18 (2) ◽  
pp. 226-231 ◽  
Author(s):  
Douglas J. Mahoney ◽  
Kate Carey ◽  
Ming-Hua Fu ◽  
Rodney Snow ◽  
David Cameron-Smith ◽  
...  

Studies examining gene expression with RT-PCR typically normalize their mRNA data to a constitutively expressed housekeeping gene. The validity of a particular housekeeping gene must be determined for each experimental intervention. We examined the expression of various housekeeping genes following an acute bout of endurance (END) or resistance (RES) exercise. Twenty-four healthy subjects performed either a interval-type cycle ergometry workout to exhaustion (∼75 min; END) or 300 single-leg eccentric contractions (RES). Muscle biopsies were taken before exercise and 3 h and 48 h following exercise. Real-time RT-PCR was performed on β-actin, cyclophilin (CYC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and β2-microglobulin (β2M). In a second study, 10 healthy subjects performed 90 min of cycle ergometry at ∼65% of V̇o2 max, and we examined a fifth housekeeping gene, 28S rRNA, and reexamined β2M, from muscle biopsy samples taken immediately postexercise. We showed that CYC increased 48 h following both END and RES exercise (3- and 5-fold, respectively; P < 0.01), and 28S rRNA increased immediately following END exercise (2-fold; P = 0.02). β-Actin trended toward an increase following END exercise (1.85-fold collapsed across time; P = 0.13), and GAPDH trended toward a small yet robust increase at 3 h following RES exercise (1.4-fold; P = 0.067). In contrast, β2M was not altered at any time point postexercise. We conclude that β2M and β-actin are the most stably expressed housekeeping genes in skeletal muscle following RES exercise, whereas β2M and GAPDH are the most stably expressed following END exercise.


2004 ◽  
Vol 287 (6) ◽  
pp. E1189-E1194 ◽  
Author(s):  
Christian P. Fischer ◽  
Peter Plomgaard ◽  
Anne K. Hansen ◽  
Henriette Pilegaard ◽  
Bengt Saltin ◽  
...  

Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men ( n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher ( P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold ( P < 0.05) in response to exercise before the training period, but only 8-fold ( P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 ( P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.


2015 ◽  
Vol 308 (9) ◽  
pp. C710-C719 ◽  
Author(s):  
Anna Vainshtein ◽  
Liam D. Tryon ◽  
Marion Pauly ◽  
David A. Hood

Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α. Anna Vainshtein received the AJP-Cell 2015 Paper of the Year award. Listen to a podcast with Anna Vainshtein and coauthor David A. Hood at http://ajpcell.podbean.com/e/ajp-cell-paper-of-the-year-2015-award-podcast/ .


2007 ◽  
Vol 293 (3) ◽  
pp. R1335-R1341 ◽  
Author(s):  
Krista R. Howarth ◽  
Kirsten A. Burgomaster ◽  
Stuart M. Phillips ◽  
Martin J. Gibala

The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580–E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 ± 1 yr; peak oxygen uptake (V̇o2peak) = 41 ± 2 ml·kg−1·min−1] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer ( n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining V̇o2peak, and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased V̇o2peak, increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a ∼30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211–1216, 1998).


Author(s):  
Nanna Skytt Pilmark ◽  
Laura Oberholzer ◽  
Jens Frey Halling ◽  
Jonas M. Kristensen ◽  
Christina Pedersen Bønding ◽  
...  

Metformin and exercise both improve glycemic control, but in vitro studies have indicated that an interaction between metformin and exercise occurs in skeletal muscle, suggesting a blunting effect of metformin on exercise training adaptations. Two studies (a double-blind, parallel-group, randomized clinical trial conducted in 29 glucose-intolerant individuals and a double-blind, cross-over trial conducted in 15 healthy lean males) were included in this paper. In both studies, the effect of acute exercise +/- metformin treatment on different skeletal muscle variables, previously suggested to be involved in a pharmaco-physiological interaction between metformin and exercise, was assessed. Furthermore, in the parallel-group trial, the effect of 12 weeks of exercise training was assessed. Skeletal muscle biopsies were obtained before and after acute exercise and 12 weeks of exercise training, and mitochondrial respiration, oxidative stress and AMPK activation was determined. Metformin did not significantly affect the effects of acute exercise or exercise training on mitochondrial respiration, oxidative stress or AMPK activation, indicating that the response to acute exercise and exercise training adaptations in skeletal muscle is not affected by metformin treatment. Further studies are needed to investigate whether an interaction between metformin and exercise is present in other tissues, e.g. the gut. Trial registration: ClinicalTrials.gov (NCT03316690 and NCT02951260). Novelty bullets • Metformin does not affect exercise-induced alterations in mitochondrial respiratory capacity in human skeletal muscle • Metformin does not affect exercise-induced alterations in systemic levels of oxidative stress nor emission of reactive oxygen species from human skeletal muscle • Metformin does not affect exercise-induced AMPK activation in human skeletal muscle


1999 ◽  
Vol 87 (1) ◽  
pp. 465-470 ◽  
Author(s):  
J. Bejma ◽  
L. L. Ji

Reactive oxygen species (ROS) are implicated in the mechanism of biological aging and exercise-induced oxidative damage. The present study examined the effect of an acute bout of exercise on intracellular ROS production, lipid and protein peroxidation, and GSH status in the skeletal muscle of young adult (8 mo, n = 24) and old (24 mo, n = 24) female Fischer 344 rats. Young rats ran on a treadmill at 25 m/min and 5% grade until exhaustion (55.4 ± 2.7 min), whereas old rats ran at 15 m/min and 5% grade until exhaustion (58.0 ± 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of ROS and other intracellular oxidants production in the homogenate of deep vastus lateralis, was 77% ( P < 0.01) higher in rested old vs. young rats. Exercise increased DCFH oxidation by 38% ( P < 0.09) and 50% ( P < 0.01) in the young and old rats, respectively. DCFH oxidation in isolated deep vastus lateralis mitochondria with site 1 substrates was elevated by 57% ( P < 0.01) in old vs. young rats but was unaltered with exercise. Significantly higher DCFH oxidation rate was also found in aged-muscle mitochondria ( P < 0.01), but not in homogenates, when ADP, NADPH, and Fe3+ were included in the assay medium without substrates. Lipid peroxidation in muscle measured by malondialdehyde content showed no age effect, but was increased by 20% ( P < 0.05) with exercise in both young and old rats. Muscle protein carbonyl formation was unaffected by either age or exercise. Mitochondrial GSH/ GSSG ratio was significantly higher in aged vs. young rats ( P < 0.05), whereas exercise increased GSSG content and decreased GSH/GSSG in both age groups ( P < 0.05). These data provided direct evidence that oxidant production in skeletal muscle is increased in old age and during prolonged exercise, with both mitochondrial respiratory chain and NADPH oxidase as potential sources. The alterations of muscle lipid peroxidation and mitochondrial GSH status were consistent with these conclusions.


1994 ◽  
Vol 26 (Supplement) ◽  
pp. S90 ◽  
Author(s):  
Robert M. O??Doherty ◽  
Deanna P. Bracy ◽  
Daryl K. Granner ◽  
David H. Wasserman

Sign in / Sign up

Export Citation Format

Share Document