scholarly journals Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison

10.1251/bpo47 ◽  
2003 ◽  
Vol 5 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Mikio Kato
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
He-Teng Zhang ◽  
Hao Wang ◽  
Hai-Sheng Wu ◽  
Jian Zeng ◽  
Yan Yang

Abstract Background Although some studies have investigated the bacterial community in vaginal tract of pregnant women, there are few reports about the viral community (virome) in this type of microenvironment. Methods To investigate the composition of virome in vaginal secretion samples, 40 vaginal secretion samples from pregnant women with vaginitis and 20 vaginal secretion samples from pregnant women without vaginitis, pooled into 4 and 2 sample pools, respectively, were subjected to viral metagenomic analysis. Results Results indicated virus sequences showing similarity to human papillomavirus (HPV), anellovirus, and norovirus were recovered from this cohort of pregnant women. Further analysis indicated that 15 different defined types and one unclassified type of HPV were detected from pregnant women with vaginitis while only 3 defined types of HPV were detected in pregnant women without vaginitis. Five different groups of viruses from the family Anelloviridae were present in pregnant women with but none of them were detected in pregnant women without vaginitis. Norovirus was detected in 3 out of the 4 sample pools from pregnant women with vaginitis but none in the pregnant women without vaginitis. Twelve complete genomes belonging to 10 different types of HPV, and 5 novel anllovirus genomes belonging 2 different genera in Anelloviridae were acquired from these libraries, based on which phylogenetical analysis and pairwise sequence comparison were performed. Phageome in these samples was also briefly characterized and compared between two groups. Conclusion Our data suggested that virome might play an important role in the progression of vaginitis in pregnant women.


1987 ◽  
Vol 164 (2) ◽  
pp. 287-293 ◽  
Author(s):  
Wolfgang MEYERHOF ◽  
Burghardt WITTIG ◽  
Beatrix TAPPESER ◽  
Walter KNOCHEL

Viruses ◽  
2012 ◽  
Vol 4 (8) ◽  
pp. 1318-1327 ◽  
Author(s):  
Yiming Bao ◽  
Vyacheslav Chetvernin ◽  
Tatiana Tatusova

1996 ◽  
Vol 109 (9) ◽  
pp. 2199-2206
Author(s):  
A.R. Mitchell ◽  
P. Jeppesen ◽  
L. Nicol ◽  
H. Morrison ◽  
D. Kipling

Chromosome 1 of the inbred mouse strain DBA/2 has a polymorphism associated with the minor satellite DNA at its centromere. The more terminal block of satellite DNA sequences on this chromosome acts as the centromere as shown by the binding of CREST ACA serum, anti-CENP-B and anti-CENP-E polyclonal sera. Demethylation of the minor satellite DNA sequences accomplished by growing cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal block and in addition it now binds to the more internal block of minor satellite DNA sequences on chromosome 1. The binding of the CENP-E protein does not appear to be affected by demethylation of the minor satellite sequences. We present a model to explain these observations. This model may also indicate the mechanism by which the CENP-B protein recognises specific sites within the arrays of minor satellite DNA on mouse chromosomes.


1996 ◽  
Vol 109 (9) ◽  
pp. 2221-2228 ◽  
Author(s):  
L. Nicol ◽  
P. Jeppesen

We have analyzed the organization of the homogeneously staining regions (HSRs) in chromosomes from a methotrexate-resistant mouse melanoma cell line. Fluorescence in situ hybridization techniques were used to localize satellite DNA sequences and the amplified copies of the dihydrofolate reductase (DHFR) gene that confer drug-resistance, in combination with immunofluorescence using antibody probes to differentiate chromatin structure. We show that the major DNA species contained in the HSRs is mouse major satellite, confirming previous reports, and that this is interspersed with DHFR DNA in an alternating tandem array that can be resolved at the cytological level. Mouse minor satellite DNA, which is normally located at centromeres, is also distributed along the HSRs, but does not appear to interfere with centromere function. The blocks of major satellite DNA are coincident with chromatin domains that are labelled by an autoantibody that recognizes a mammalian homologue of Drosophila heterochromatin-associated protein 1, shown previously to be confined to centric heterochromatin in mouse. An antiserum that specifically recognizes acetylated histone H4, a marker for active chromatin, fails to bind to the satellite DNA domains, but labels the intervening segments containing DHFR DNA. We can find no evidence for the spreading of the inactive chromatin domains into adjacent active chromatin, even after extended passaging of cells in the absence of methotrexate selection.


1975 ◽  
Vol 96 (4) ◽  
pp. 665-692 ◽  
Author(s):  
Sharyn A. Endow ◽  
Mary Lake Polan ◽  
Joseph G. Gall

Chromosoma ◽  
2004 ◽  
Vol 112 (7) ◽  
pp. 372-373 ◽  
Author(s):  
Kazuhiko Yamada ◽  
Chizuko Nishida-Umehara ◽  
Yoichi Matsuda

Sign in / Sign up

Export Citation Format

Share Document