The Health Impacts of Coal-Fired Power Plants in India and the Co-benefits of Greenhouse Gas Reductions

2021 ◽  
Vol 111 ◽  
pp. 386-390
Author(s):  
Maureen Cropper ◽  
Ryna Cui ◽  
Sarath Guttikunda ◽  
Nate Hultman ◽  
Puja Jawahar ◽  
...  

Under the Paris Agreement, India has pledged that 40 percent of its electricity generating capacity will come from non-fossil-fuel sources by the year 2030; however, this pledge does not limit total coal-fired generating capacity. As of 2019, planned increases in coal-fired capacity totaled 95 gigawatts--46 percent of installed coal-fired capacity in 2018. In this paper, we estimate the carbon dioxide benefits and health co-benefits of not building these plants. We also estimate the mortality impacts of the 2018 stock of coal-fired power plants and use it to calculate the tax on electricity generation from coal that would internalize these damages.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6258
Author(s):  
Juyoul Kim ◽  
Ahmed Abdel-Hameed ◽  
Soja Reuben Joseph ◽  
Hilali Hussein Ramadhan ◽  
Mercy Nandutu ◽  
...  

The most recent assessments conducted by the International Energy Agency indicate that natural gas accounts for the majority of Nigeria’s fossil fuel-derived electricity generation, with crude oil serving mostly as a backup source. Fossil fuel-generated electricity represents 80% of the country’s total. In addition, carbon dioxide (CO2) emissions in Nigeria in 2018 (101.3014 Mtons) demonstrated a 3.83% increase from 2017. The purpose of this study is to suggest an alternate energy supply mix to meet future electrical demand and reduce CO2 emissions in Nigeria. The Model for Energy Supply Strategy Alternatives and their General Environmental Impact (MESSAGE) was used in this study to model two case situations of the energy supply systems in Nigeria to determine the best energy supply technology to meet future demand. The Simplified Approach to Estimating Electricity Generation’s External Costs and Impacts (SIMPACTS) code is also used to estimate the environmental impacts and resulting damage costs during normal operation of various electricity generation technologies. Results of the first scenario show that gas and oil power plants are the optimal choice for Nigeria to meet future energy needs with no bound on CO2 emission. If Nigeria adopts CO2 emission restrictions to comply with the Paris Agreement’s target of decreasing worldwide mean temperature rise to 1.5 °C, the best option is nuclear power plants (NPPs). The MESSAGE results demonstrate that both fossil fuels and NPPs are the optimal electricity-generating technologies to meet Nigeria’s future energy demand. The SIMPACTS code results demonstrate that NPPs have the lowest damage costs because of their low environmental impact during normal operation. Therefore, NPP technology is the most environmentally friendly technology and the best choice for the optimization of future electrical technology to meet the demand. The result from this study will serve as a reference source in modeling long-term energy mix therefore reducing CO2 emission in Nigeria.


2017 ◽  
Vol 43 (5) ◽  
pp. 2274
Author(s):  
Α. Metaxas ◽  
Α.Ν. Georgakopoulos ◽  
D.Μ.Μ. Karageorgiou ◽  
G. Papanikolaou ◽  
E.D. Karageorgiou

Lignite is an important energy source for Greece, which severely relies on this fossil fuel for electricity generation over the years. The lignite combustion, however, releases a significant amount of carbon dioxide to the atmosphere per unit of energy generated, more than does the combustion of other fossil fuels. On the other hand, there is a growing concern over the possible consequences of global warming due to the increase of carbon dioxide in the atmosphere (a major greenhouse gas). Additionally, there is also a need for accurate estimates of carbon dioxide emissions. There are many factors resulting in the increase of CO2 content in lignite such as their formation and depositional environment, the possible presence of fossils, and their rank. In the present paper the CO2 content of the Proastio lignite deposit, Ptolemais Basin, is studied, in relation to the depositional palaeo-environment. An interpretation of CO2 variation with depth, age and surrounding rocks is also attempted. CO2 content of Proastio deposit is compared with this of other lignite deposits in the Ptolemais Basin, of various types and ages. Finally, the effect of CO2 content in the combustion of lignite is studied, while the possibility of the geological storage of the emitted carbon dioxide is explored after its capture from the Thermal Power Plants (CCS technology).


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


2022 ◽  
Vol 1 (15) ◽  
pp. 71-75
Author(s):  
Dmitriy Kononov

The strategy of low-carbon development of the economy and energy of Russia provides for the introduction of a fee (tax) for carbon dioxide emissions by power plants. This will seriously affect their prospective structure and lead to an increase in electricity prices. The expected neg-ative consequences for national and energy security are great. But serious and multilateral research is needed to properly assess these strategic threats


2019 ◽  
Vol 19 (2) ◽  
pp. 149-168 ◽  
Author(s):  
Benjamin Brown ◽  
Samuel J. Spiegel

In the wake of the Paris Agreement on climate change, promises to phase out coal-fired power have suggested cause for optimism around energy transition globally. However, coal remains entangled with contentious development agendas in many parts of the world, while fossil fuel industries continue to flourish. This article discusses these entanglements through a climate justice lens that engages the cultural politics surrounding coal and energy transition. We highlight how recent struggles around phasing out coal have stimulated renewed critical debates around colonialism, empire, and capitalism more broadly, recognizing climate change as an intersectional issue encompassing racial, gender, and economic justice. With social movements locked in struggles to resist the development or expansion of coal mines, power plants, and associated infrastructure, we unpack tensions that emerge as transnational alliances connect disparate communities across the world. Our conclusion signals the need for greater critical engagement with how intersecting inequalities are coded into the cultural politics of coal, and how this shapes efforts to pursue a just transition.


Author(s):  
Kelly M. Twomey ◽  
Michael E. Webber

The United States uses approximately 5% of its primary energy and 6% of its electricity to pump, convey, treat, distribute, heat, and recondition water in the US public water supply. Allocating this energy towards water has contributed to a national public water distribution system that is considered among the best in the world, providing its users with a clean and reliable water supply. This water supply, treated to stringent water standards defined by the Environmental Protection Agency’s Safe Drinking Water Act, has been critical to the health and livelihood of United States’ citizens. However, this energy-expenditure comes at an environmental cost, since the majority of water-related energy is derived from burning fossil fuels. Fossil-fuel combustion emits carbon-dioxide, a greenhouse gas that has become of concern in recent years because of its connection to anthropogenic climate change. The amount of carbon-dioxide that is emitted from fossil-fuel combustion is principally a function of the quantity and type of fuel that is burned for energy. This first-order analysis quantifying national water-related carbon dioxide emissions is the second in a series of several analyses by the authors, quantifying the energy and greenhouse emissions embedded in the US public water supply. Results indicate that water withdrawal, conveyance, treatment, distribution, end-use preparation, and wastewater treatment produces approximately 301 million metric tonnes of CO2 emissions annually. This quantity is 5.1% of total US CO2 emissions in 2009, which is approximately equal to emissions from the gasoline consumed by one-quarter of the US passenger fleet in the same year. Considering that the emissions associated with water for industrial, municipal and self-supplied sectors (such as agriculture) were not included in this analysis, the actual quantity of carbon emissions released as a result of water-related activities is likely to be higher. Consequently, identifying efficiency measures and conservation schemes to reduce the amount of water-related energy consumed in the US might be significant in achieving future greenhouse gas emission reduction goals.


Energy Policy ◽  
2007 ◽  
Vol 35 (8) ◽  
pp. 3991-3998 ◽  
Author(s):  
Evangelos Tzimas ◽  
Arnaud Mercier ◽  
Calin-Cristian Cormos ◽  
Stathis D. Peteves

Sign in / Sign up

Export Citation Format

Share Document