scholarly journals Emissions, Transmission, and the Environmental Value of Renewable Energy

2021 ◽  
Vol 13 (2) ◽  
pp. 241-272
Author(s):  
Harrison Fell ◽  
Daniel T. Kaffine ◽  
Kevin Novan

We examine how transmission congestion alters the environmental benefits provided by renewable generation. Using hourly data from the Texas and midcontinent electricity markets, we find that relaxing transmission constraints between the wind-rich areas and the demand centers of the respective markets conservatively increases the nonmarket value of wind by 30 percent for Texas and 17 percent for midcontinent markets. Much of this increase in the nonmarket value arises from a redistribution in where air quality improvements occur—when transmission is not constrained, wind offsets much more pollution from fossil fuel units located near highly populated demand centers. (JEL L94, Q42, Q51, Q53)

2021 ◽  
Vol 4 (S2) ◽  
Author(s):  
Tayenne Dias de Lima ◽  
John F. Franco ◽  
Fernando Lezama ◽  
João Soares ◽  
Zita Vale

AbstractIn the coming years, several transformations in the transport sector are expected, associated with the increase in electric vehicles (EVs). These changes directly impact electrical distribution systems (EDSs), introducing new challenges in their planning and operation. One way to assist in the desired integration of this technology is to allocate EV charging stations (EVCSs). Efforts have been made towards the development of EVCSs, with the ability to recharge the vehicle at a similar time than conventional vehicle filling stations. Besides, EVs can bring environmental benefits by reducing greenhouse gas emissions. However, depending on the energy matrix of the country in which the EVs fleet circulates, there may be indirect emissions of polluting gases. Therefore, the development of this technology must be combined with the growth of renewable generation. Thus, this proposal aims to develop a mathematical model that includes EVs integration in the distribution system. To this end, a mixed-integer linear programming (MILP) model is proposed to solve the allocation problem of EVCSs including renewable energy sources. The model addresses the environmental impact and uncertainties associated with demand (conventional and EVs) and renewable generation. Moreover, an EV charging forecast method is proposed, subject to the uncertainties related to the driver's behavior, the energy required by these vehicles, and the state of charge of the EVs. The proposed model was implemented in the AMPL modelling language and solved via the commercial solver CPLEX. Tests with a 24-node system allow evaluating the proposed method application.


2021 ◽  
Vol 23 (4) ◽  
pp. 0-0

Renewable energy, such as solar and wind, has been increasing in popularity for over a decade. This is especially true in rural, underdeveloped areas, and urban households that desire energy independence. Renewable energy sources, such as solar, provide enhanced environmental benefits while simultaneously minimizing the carbon footprint. One popular technology that can capture solar energy is solar panels. The demand for solar panels has been on the rise due to increases in energy conversion efficiency, long-term financial advantages, and contributions to decreasing fossil fuel usage. However, solar panels need a steady supply of sunlight. This can be challenging in many situations, geographies, and environments. This paper uses multiple machine learning (ML) algorithms that can predict future values of solar radiation based on previously observed values and other environmental features measured without the use of complex equipment with methods that are computationally efficient so that forecasting can be done on consumer premises.


2013 ◽  
Vol 5 (4) ◽  
pp. 107-133 ◽  
Author(s):  
Joseph Cullen

Production subsidies for renewable energy, such as solar or wind power, are rationalized by their environmental benefits. Subsidizing these projects allows clean, renewable technologies to produce electricity that otherwise would have been produced by dirtier, fossil-fuel power plants. In this paper, I quantify the emissions offset by wind power for a large electricity grid in Texas using the randomness inherent in wind power availability. When accounting for dynamics in the production process, the results indicate that only for high estimates of the social costs of pollution does the value of emissions offset by wind power exceed cost of renewable energy subsidies. (JEL L94, L98, Q42, Q48, Q51, Q53, Q54)


2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


2019 ◽  
Vol 13 (18) ◽  
pp. 4061-4072 ◽  
Author(s):  
Seyed Alireza Mozdawar ◽  
Asghar Akbari Foroud ◽  
Meysam Amirahmadi

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2192
Author(s):  
Robert J. Brecha ◽  
Katherine Schoenenberger ◽  
Masaō Ashtine ◽  
Randy Koon Koon

Many Caribbean island nations have historically been heavily dependent on imported fossil fuels for both power and transportation, while at the same time being at an enhanced risk from the impacts of climate change, although their emissions represent a very tiny fraction of the global total responsible for climate change. Small island developing states (SIDSs) are among the leaders in advocating for the ambitious 1.5 °C Paris Agreement target and the transition to 100% sustainable, renewable energy systems. In this work, three central results are presented. First, through GIS mapping of all Caribbean islands, the potential for near-coastal deep-water as a resource for ocean thermal energy conversion (OTEC) is shown, and these results are coupled with an estimate of the countries for which OTEC would be most advantageous due to a lack of other dispatchable renewable power options. Secondly, hourly data have been utilized to explicitly show the trade-offs between battery storage needs and dispatchable renewable sources such as OTEC in 100% renewable electricity systems, both in technological and economic terms. Finally, the utility of near-shore, open-cycle OTEC with accompanying desalination is shown to enable a higher penetration of renewable energy and lead to lower system levelized costs than those of a conventional fossil fuel system.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1877
Author(s):  
Widha Kusumaningdyah ◽  
Tetsuo Tezuka ◽  
Benjamin C. McLellan

Energy transitions are complex and involve interrelated changes in the socio-technical dimensions of society. One major barrier to renewable energy transitions is lock-in from the incumbent socio-technical regime. This study evaluates Energy Product–Service Systems (EPSS) as a renewable energy market mechanism. EPSS offer electricity service performance instead of energy products and appliances for household consumers. Through consumers buying the service, the provider company is enabled to choose, manage and control electrical appliances for best-matched service delivery. Given the heterogenous market players and future uncertainties, this study aims to identify the necessary conditions to achieve a sustainable renewable energy market. Simulation-Based Design for EPSS framework is implemented to assess various hypothetical market conditions’ impact on market efficiency in the short term and long term. The results reveal the specific market characteristics that have a higher chance of causing unexpected results. Ultimately, this paper demonstrates the advantage of implementing Simulation-Based Design for EPSS to design retail electricity markets for renewable energy under competing market mechanisms with heterogenous economic agents.


2020 ◽  
pp. 0958305X2094998
Author(s):  
Chun Chih Chen

Taiwan intends to be nuclear free by 2025. This study employs the Lotka–Volterra competition model for sustainable development to analyze the emissions–energy–economy (3Es) issue to make appropriate policy suggestions for a nuclear-free transition. It also offers a new approach to naming the 3E relationship. The literature review shows that the environmental Kuznets curve accompanies the feedback and conservation hypotheses. In the 3E dynamics relationship analysis, the model shows a good mean absolute percentage error (<15%) for the model estimation. The key findings are as follows: 1) the fossil fuel-led economy exists; 2) CO2 emissions are reduced with nuclear energy consumption; 3) renewable energy is far from scale; 4) a complementary effect exists between fossil fuel and nuclear energy consumption; and 5) gas retrofitting and phasing out of nuclear seem imminent. In the energy transition, Taiwan drastically cuts nuclear energy without considering energy diversity due to which troubles might ensue. The priority issue for Taiwan’s energy mix is energy security. To deal with these concerns, this study suggests the government could improve energy efficiency, build a smart grid, develop carbon capture and storage, and reconsider putting nuclear energy back into the energy mix before renewable energy is scaled.


Sign in / Sign up

Export Citation Format

Share Document