Effect of Annealing Temperature on Magnetic Properties of Fe-Based Amorphous Ribbons

2019 ◽  
Vol 09 (04) ◽  
pp. 347-354
Author(s):  
校嘉 许
2004 ◽  
Vol 449-452 ◽  
pp. 1049-1052
Author(s):  
Li Jin ◽  
Y.W. Rheem ◽  
Cheol Gi Kim ◽  
De Sheng Sun ◽  
Chong Oh Kim ◽  
...  

The magnetic properties were investigated on Co66Fe4B15Si15 amorphous ribbons of annealed at temperature range from 473 K to 773 K in vacuum (A-batch) and open air (B-batch). Static permeability from domain wall motion decreases with annealing temperature both in A- and B-batch sample. The permeability from magnetization rotation increases up to 700 K annealing temperature, but then decreases. The GMI profiles show a symmetric curve in A-batch samples irrespective of annealing temperature. In B-batch samples, symmetric profiles are shown up to 650 K annealing temperature, while they becomes asymmetric for further annealing temperature, due to the exchange bias-field induced by surface crystalline layer.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1325-C8-1326
Author(s):  
P. Sánchez ◽  
M. C. Sánchez ◽  
E. López ◽  
M. García ◽  
C. Aroca

2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1097
Author(s):  
Luran Zhang ◽  
Xinchen Du ◽  
Hongjie Lu ◽  
Dandan Gao ◽  
Huan Liu ◽  
...  

L10 ordered FePt and FePtCu nanoparticles (NPs) with a good dispersion were successfully fabricated by a simple, green, one-step solid-phase reduction method. Fe (acac)3, Pt (acac)2, and CuO as the precursors were dispersed in NaCl and annealed at different temperatures with an H2-containing atmosphere. As the annealing temperature increased, the chemical order parameter (S), average particle size (D), coercivity (Hc), and saturation magnetization (Ms) of FePt and FePtCu NPs increased and the size distribution range of the particles became wider. The ordered degree, D, Hc, and Ms of FePt NPs were greatly improved by adding 5% Cu. The highest S, D, Hc, and Ms were obtained when FePtCu NPs annealed at 750 °C, which were 0.91, 4.87 nm, 12,200 Oe, and 23.38 emu/g, respectively. The structure and magnetic properties of FePt and FePtCu NPs at different annealing temperatures were investigated and the formation mechanism of FePt and FePtCu NPs were discussed in detail.


2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


2021 ◽  
pp. 114453
Author(s):  
S. Elkhouad ◽  
Z. Yamkane ◽  
J. Louafi ◽  
M. Moutataouia ◽  
L.H. Omari ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Gui-fang Li ◽  
Shibin Liu ◽  
Shanglin Yang ◽  
Yongqian Du

We prepared magnetic thin films Ni81Fe19on single-crystal Si(001) substrates via single graphene layer through magnetron sputtering for Ni81Fe19and chemical vapor deposition for graphene. Structural investigation showed that crystal quality of Ni81Fe19thin films was significantly improved with insertion of graphene layer compared with that directly grown on Si(001) substrate. Furthermore, saturation magnetization of Ni81Fe19/graphene/Si(001) heterostructure increased to 477 emu/cm3with annealing temperatureTa=400°C, which is much higher than values of Ni81Fe19/Si(001) heterostructures withTaranging from 200°C to 400°C.


2003 ◽  
Vol 258-259 ◽  
pp. 174-176 ◽  
Author(s):  
E.E. Shalyguina ◽  
M.A. Komarova ◽  
V.V. Molokanov ◽  
Chong-Oh Kim ◽  
CheolGi Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document