scholarly journals Inhibition of vacuum sublimation artefacts for (Scanning) Transmission Electron Microscopy ((S)TEM) of sulphur samples via encapsulation

2022 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
Oskar Ronan ◽  
Clive Downing ◽  
Valeria Nicolosi

Lithium-sulfur battery is one of promising candidates for next-generation energy storage device due to the sulfur cathode material with low cost and nontoxicity, and super high theoretical energy density (nearly 2600Wh kg−1) and specific energy (2567Wh kg−1). Sulphur, however, poses a few interesting challenges before it can gain widespread utilisation. The biggest issue is known as the polysulphide shuttling effect which contributes to rapid capacity loss after cycling. Accurate characterisation of sulphur cathodic materials becomes critical to our understanding polysulphide shuttling effect in the quest of finding mitigating solutions. Electron microscopy is playing a crucial role in battery research in determining structure–property–function relations. However, sulphur undergoes sublimation at a point above the typical pressures found in the column of a transmission electron microscope (TEM) at room temperature. This makes the imaging and characterisation of any sort of nanostructured sulphur samples challenging, as the material will be modified or even disappear rapidly as soon as it is inserted into the TEM vacuum. As a result, materials characterised by such methods are prone to deviation from normal conditions to a great extent. To prevent this, a novel method of encapsulating sulphur particles between silicon nitride (SiNx) membranes is demonstrated in this work.

2011 ◽  
Vol 19 (3) ◽  
pp. 16-20
Author(s):  
Niels de Jonge ◽  
Elisabeth A. Ring ◽  
Wilbur C. Bigelow ◽  
Gabriel M. Veith

Solid materials in subambient gaseous environments have been imaged using in situ transmission electron microscopy (TEM), for example to study dynamic effects: carbon nanotube growth, nanoparticle changes during redox reactions, and phase transitions in nanoscale systems. In these studies the vacuum level in the specimen region of the electron microscope was increased to pressures of up to 10 mbar using pump-limiting apertures that separated the specimen region from the rest of the high-vacuum electron column, but it has not been possible to achieve the higher pressures that are desirable for catalysis research. TEM imaging at atmospheric pressure and at elevated temperature was achieved with 0.2-nm resolution by enclosing a gaseous environment several micrometers thick between ultra-thin, electron transparent silicon nitride windows. Although Ångström-level resolution in situ TEM has been demonstrated with aberration-corrected systems, the key difficulty with TEM imaging is its dependence on phase contrast, which requires ultra-thin specimens, limiting the choice of experiments.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 377 ◽  
Author(s):  
Gabriela Tubon Usca ◽  
Cristian Vacacela Gomez ◽  
Marco Guevara ◽  
Talia Tene ◽  
Jorge Hernandez ◽  
...  

A novel method is presented to prepare few-layer graphene (FLG) in N-methyl-2-pyrrolidinone (NMP) by using a simple, low-cost and energy-effective shear exfoliation assisted by zeolite and using a cappuccino mixer to produce shear. We propose that the exfoliation of natural graphite flakes can be achieved using inelastic collisions between graphite flakes and zeolite particles in a dynamic colloidal fluid. To confirm the exfoliation of FLG, spectroscopy and morphological studies are carried out using Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, the obtained graphene shows a linear flow of current and low resistance. The proposed method shows great promise for the industrial-scale synthesis of high-quality graphene with potential applications in future graphene-based devices, and furthermore, this method can be extended to exfoliate inorganic layered materials such as BN and MoS2.


Author(s):  
R. J. Kar ◽  
T. P. McHale ◽  
R. T. Kessler

Low-density and high strength-type rapidly solidified (RST) aluminum alloys offer promise for structural aerospace applications. At Northrop, as part of a continuing program to establish structure-property relationships in advanced materials, detailed transmission electron microscopy (TEM)/scanning transmission electron microscopy (STEM) of candidate RST aluminum-lithium (Al-Li) and high strength (7XXX-type) aluminum-copper-magnesium-zinc (Al-Cu-Mg-Zn) alloys is routinely performed. This paper describes typical microstructural features that we have observed in these alloys.Figure 1 illustrates the microstructure of an inert-gas atomized RST Al-Li-Cu-Mg-Zr alloy. Frequently the grain boundaries are decorated with continuous or semi-continuous stringers of oxide that are relatively opaque to the incident electron beam. These have been identified to be Al-,Mg-, and Li- containing oxides present on powder particle surfaces prior to consolidation, and which have not been adequately broken up and dispersed by post-consolidation processing. The microstructures of these alloys are generally characterized by unrecystallized grains and equiaxed sub-grains pinned by fine (0.2μm) precipitates. These have been identified to be Al3Zr dispersoids using a combination of selected area diffraction/energy-dispersive x-ray (SAD/EDX) methods.


2021 ◽  
Vol 56 (9) ◽  
pp. 5309-5320
Author(s):  
Khalid Hattar ◽  
Katherine L. Jungjohann

Abstract Multimodal in-situ experiments are the wave of the future, as this approach will permit multispectral data collection and analysis during real-time nanoscale observation. In contrast, the evolution of technique development in the electron microscopy field has generally trended toward specialization and subsequent bifurcation into more and more niche instruments, creating a challenge for reintegration and backward compatibility for in-situ experiments on state-of-the-art microscopes. We do not believe this to be a requirement in the field; therefore, we propose an adaptive instrument that is designed to allow nearly simultaneous collection of data from aberration-corrected transmission electron microscopy (TEM), probe-corrected scanning transmission electron microscopy, ultrafast TEM, and dynamic TEM with a flexible in-situ testing chamber, where the entire instrument can be modified as future technologies are developed. The value would be to obtain a holistic understanding of the underlying physics and chemistry of the process-structure–property relationships in materials exposed to controlled extreme environments. Such a tool would permit the ability to explore, in-situ, the active reaction mechanisms in a controlled manner emulating those of real-world applications with nanometer and nanosecond resolution. If such a powerful tool is developed, it has the potential to revolutionize our materials understanding of nanoscale mechanisms and transients. Graphical Abstract


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
S. P. O’Brien ◽  
J. Christudasjustus ◽  
L. Esteves ◽  
S. Vijayan ◽  
J. R. Jinschek ◽  
...  

AbstractA compositionally complex alloy was designed, consisting of equiatomic concentrations of four low-cost commodity elements (Al, Fe, Mn, and Si). The alloy was characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The corrosion of the AlFeMnSi alloy, as evaluated using potentiodynamic polarization tests and electrochemical impedance spectroscopy in 0.6 M NaCl solution, was comparable with that of stainless steel (SS) 304L. Detailed X-ray photoelectron spectroscopy analysis was carried out, including the determination of high-resolution spectra and surface sputtering. In addition, scanning transmission electron microscopy was also used to study the surface film(s) developed after constant immersion. The AlFeMnSi alloy exhibited a unique form of ‘passivity’ that arises from the development of a silicon-rich surface film from dynamic incongruent dissolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Boyuan Shen ◽  
Xiao Chen ◽  
Xiaoyu Fan ◽  
Hao Xiong ◽  
Huiqiu Wang ◽  
...  

AbstractThe micro-structures of catalyst materials basically affect their macro-architectures and catalytic performances. Atomically resolving the micro-structures of zeolite catalysts, which have been widely used in the methanol conversion, will bring us a deeper insight into their structure-property correlations. However, it is still challenging for the atomic imaging of silicoaluminophosphate zeolites by electron microscopy due to the limits of their electron beam sensitivity. Here, we achieve the real-space imaging of the atomic lattices in SAPO-34 and SAPO-18 zeolites, including the Al–O–P atoms and bonds, by the integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM). The spatial distribution of SAPO-34 and SAPO-18 domains in SAPO-34/18 intergrowths can be clearly resolved. By changing the Si contents and templates in feed, we obtain two SAPO-34/18 catalysts, hierarchical and sandwich catalysts, with highly-mixed and separated SAPO-34 and SAPO-18 lattices respectively. The reduced diffusion distances of inside products greatly improve the catalytic performances of two catalysts in methanol conversion. Based on the observed distributions of lattices and elements in these catalysts, we can have a preliminary understanding on the correlation between the synthesis conditions and structures of SAPO-34/18 intergrowth catalysts to further modify their performances based on unique architectures.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 878
Author(s):  
Hasti Vahidi ◽  
Komal Syed ◽  
Huiming Guo ◽  
Xin Wang ◽  
Jenna Laurice Wardini ◽  
...  

Interfaces such as grain boundaries (GBs) and heterointerfaces (HIs) are known to play a crucial role in structure-property relationships of polycrystalline materials. While several methods have been used to characterize such interfaces, advanced transmission electron microscopy (TEM) and scanning TEM (STEM) techniques have proven to be uniquely powerful tools, enabling quantification of atomic structure, electronic structure, chemistry, order/disorder, and point defect distributions below the atomic scale. This review focuses on recent progress in characterization of polycrystalline oxide interfaces using S/TEM techniques including imaging, analytical spectroscopies such as energy dispersive X-ray spectroscopy (EDXS) and electron energy-loss spectroscopy (EELS) and scanning diffraction methods such as precession electron nano diffraction (PEND) and 4D-STEM. First, a brief introduction to interfaces, GBs, HIs, and relevant techniques is given. Then, experimental studies which directly correlate GB/HI S/TEM characterization with measured properties of polycrystalline oxides are presented to both strengthen our understanding of these interfaces, and to demonstrate the instrumental capabilities available in the S/TEM. Finally, existing challenges and future development opportunities are discussed. In summary, this article is prepared as a guide for scientists and engineers interested in learning about, and/or using advanced S/TEM techniques to characterize interfaces in polycrystalline materials, particularly ceramic oxides.


1999 ◽  
Vol 14 (8) ◽  
pp. 3281-3291 ◽  
Author(s):  
J. M. Fitz-Gerald ◽  
R. K. Singh ◽  
H. Gao ◽  
D. Wright ◽  
M. Ollinger ◽  
...  

In this paper, we show the feasibility of the pulsed-laser ablation technique to grow 20–30-nm-thick, discrete and continuous coatings on particulate material systems so that the properties of the core particles can be suitably modified. Experiments were conducted with a pulsed excimer laser (λ = 248 nm, pulse duration = 25 ns) to deposit nanoparticle coatings on Al2O3 and SiO2 core particles by irradiation of Ag and Y2O3–Eu3+ sputtering targets. Structural characterization was performed with scanning electron microscopy, wavelength dispersive x-ray mapping, transmission electron microscopy, and scanning transmission electron microscopy with z-contrast.


Author(s):  
A. Poulia ◽  
A. S. Azar ◽  
M. Schrade ◽  
J. S. Graff ◽  
C. Bazioti ◽  
...  

AbstractFourteen alloys of the FeCoNiAlxMnx system were processed by laser metal deposition (LMD). The feedstock was a weighted and proportional blend of the containing elemental powders, targeting the nominal alloy compositions. Prior to processing, the composition and particle characteristics of the feedstock were assessed. The microstructural features and crystal structures of all LMD processed materials were characterized with scanning electron microscopy/energy dispersive spectroscopy and x-ray diffraction, in both as-received and heat-treated conditions. Selected samples were investigated via scanning transmission electron microscopy and electron backscattered diffraction for further structural understanding. Hardness tests, under various indentation loads and dwelling times, were performed to assess the mechanical properties of the processed samples. The results showed a rise in hardness as Al and Mn contents increase. The variation of hardness with composition follows a reverse sigma-type curve, reflecting the microstructural evolution and grain size variations in the alloys. Based on the hardness data, we suggest a trained and validated predictive model, which can be used in alloy design for future developments.


Author(s):  
J. M. Cowley

The comparison of scanning transmission electron microscopy (STEM) with conventional transmission electron microscopy (CTEM) can best be made by means of the Reciprocity Theorem of wave optics. In Fig. 1 the intensity measured at a point A’ in the CTEM image due to emission from a point B’ in the electron source is equated to the intensity at a point of the detector, B, due to emission from a point A In the source In the STEM. On this basis it can be demonstrated that contrast effects In the two types of instrument will be similar. The reciprocity relationship can be carried further to include the Instrument design and experimental procedures required to obtain particular types of information. For any. mode of operation providing particular information with one type of microscope, the analagous type of operation giving the same information can be postulated for the other type of microscope. Then the choice between the two types of instrument depends on the practical convenience for obtaining the required Information.


Sign in / Sign up

Export Citation Format

Share Document