scholarly journals GAS DISTRIBUTION PHASES HYDRAULIC CONTROLLED INTERNAL COMBUSTION ENGINE VALVES

2022 ◽  
Vol 16 (4) ◽  
pp. 47-52
Author(s):  
Nail Adigamov ◽  
Andrey Negovora ◽  
Larisa Zimina ◽  
Alexey Maximov

The efficiency of an agricultural car or tractor depends on the characteristics of the engine determined by the gas distribution mechanism (GRM). Traditional timing with fixed valve timing does not provide high-quality gas exchange at all engine operating modes. The aim of the work is to improve the characteristics of the engine by using the hydraulic drive of the timing valves. The drive allows you to turn off individual valves, set the moments of their opening and closing in an arbitrary way, provide several triggering of the internal combustion engine valves during the operating cycle. The drive is controlled by an electronic control unit (ECU). The advantage of the drive is its ease of integration into the internal combustion engine. The hydraulic drive ensures that the timing valves are lifted to a height of about 14 mm. The law of displacement of the valve, revealed experimentally, is close to trapezoidal. The use of a hydraulic valve drive has a positive effect on the "time-section" factor in the area of low and medium crankshaft rotational speeds. The increment of the factor "time-section" is due to the significant speeds of opening and closing the valves. Due to the peculiarities of the kinematic characteristics of the movement of the valves when using a hydraulic drive for their movement, the use of serial phases of gas distribution of the engine is impractical. Numerical modeling of the operation of the internal combustion engine determined the regularity of the change in valve timing from the high-speed operating mode of the engine. Optimization criterion is the achievement of maximum engine power. When choosing the valve timing, the possibility of meeting the intake and exhaust valves with the engine piston was excluded. The use of optimal phases leads to an increase in power up to 4.5% at a low crankshaft speed. With an increase in the speed mode, the increase in power decreases, and with a high frequency of rotation of the crankshaft, its slight decrease (1.4%) is observed. An increase in torque, up to a power utilization factor of 0.9, and its subsequent decrease, allow stabilizing the vehicle speed on a road with variable resistance. An increase in the working pressure in the hydraulic drive of the valves makes it possible to intensify gas exchange even at a high speed of rotation of the crankshaft

Author(s):  
S. Zaichenko ◽  
S. Korol ◽  
V. Opryshko ◽  
D. Derevyanko ◽  
N. Zhukova

The use of generators at different load levels allows you to use part of the rated power of the engines, by reducing the speed of the internal combustion engine, thus reducing fuel consumption and increase the overall efficiency of the system as a whole. However, it should be noted that the optimal operation of the internal combustion engine at fixed gas distribution parameters is possible only at a certain engine speed. Reducing the engine speed leads to a deterioration of the filling of the fuel-air mixture and the release of exhaust gases from the engine, accompanied by the intake of exhaust gases into the intake manifold and the emission of part of the fuel mixture into the exhaust pipe. The paper presents the results of the study of generator parameters and the general concept of creating an autonomous power supply control system based on an internal combustion engine in order to reduce the specific indicators of electricity generation. The expediency of regulating the power level of an internal combustion engine has been experimentally proved. To achieve this goal, it is proposed to adjust the opening and closing angles of the internal combustion engine with a solenoid valve. The use of this system allows to reduce the specific costs by more than 4 times when generating electricity with low generator load. Based on the phase distribution diagram of the internal combustion engine, the dependence of the change of the opening and closing angles of the inlet and outlet valves on the power of the autonomous energy source is proposed.


Author(s):  
L. F. R. Fell

The author considers that, while the internal combustion engine is not universally applicable to British railway traction, there is a wide field which can be more economically covered by the oil engine than by other means. Electric transmission is, in spite of high first cost, the most readily adaptable for use in conjunction with the oil engine, and possesses a balance of advantages over all other known systems. The oil-electric locomotive offers a long list of important advantages for railway operation not possessed by other systems. These advantages are, however, offset by high first cost for powers of 1,000 b.h.p. and over. A comparison is drawn between the first cost of steam and oil-electric locomotives for the various duties called for in the service of a British railway. This shows that, while the first cost of the oil-electric main line express passenger locomotive is three times that of the existing steam locomotive, the first costs of branch passenger, medium goods, and shunting steam and oil-electric engines are comparable. This is owing to the cost per brake horse-power required diminishing with increase of size in the case of the steam locomotive, whereas it remains constant in the case of the oil-electric. Owing to the high rate of acceleration necessary the use of the oil-electric system is considered unsuitable as a substitute for dependent electrification of suburban lines. The railway oil engine is a specialized requirement. It must be of the high-speed type running at speeds of up to 1,500 r.p.m., in order to reduce first cost and for other reasons. Details are given of various types of British compression-ignition engines which are considered suitable for British railway work. The author deduces that an engine of twelve-cylinder “V” type and an engine with six cylinders in line, both incorporating the same design and size of cylinder, would fill all the requirements which can be economically met by the oil engine on a British railway. He selects the single sleeve-valve engine design as having the greatest balance of advantages in its favour for railway purposes. Attention is drawn to the importance of simplifying the installation of the compression-ignition engine and various suggestions are put forward to this end. In conclusion the author stresses the importance of the railway companies giving a lead to the internal combustion engine industry as to the railway requirements in size and type of engine, and states that it is the purpose of his paper to assist those concerned in arriving at this immediately important decision.


Author(s):  
Akane Ishizuka ◽  
Narimasa Ueda ◽  
Yoshitaka Morimoto ◽  
Akio Hayashi ◽  
Yoshiyuki Kaneko ◽  
...  

Abstract Since shifting to electric vehicles as a countermeasure against global warming is not always easy to complete, the hybrid car has been considered as another possible solution. However, based on the calculation of total CO2 emissions, all hybrid cars which will constitute 90% of all cars are expected to be equipped with an internal combustion engine even after 2030. Therefore, further efficiency improvement of the internal combustion engine is necessary. One of the key factors is the variable valve timing and variable lift with the 3D cam mechanism. Since conventional technology uses a complicated link mechanism and servo motor control, this leads a problem to set into small cars or motorcycles because they cannot afford to install the variable valve timing and variable lift with cam mechanism. To solve this problem, a cam shape with a three-dimensional curved surface has been proposed. In order to create this shape, the machining method for non-axisymmetric curved surface turning (NACS-Turning) is required. To build the new system, our research group has proposed a new machining method using a driven type rotary tool and a linear motor driven moving table to enable to achieve NACS-Turning. In this new system, a new tool rotation axis (B axis) is adopted to synchronize its rotational position with the rotational position of the spindle (C axis) holding the workpiece, the X1-, X2-, and Z-Axis positions in total. In this paper, the new hardware configuration is proposed to overcome the present machining accuracy.


1933 ◽  
Vol 37 (271) ◽  
pp. 641-654
Author(s):  
J. Dick

The high-speed internal combustion engine presents many problems arising from dynamic effects. Amongst these is the phenomenon known as “ surging ” in the helical springs used for the operation of the valves.If a helical spring is held at both ends, any disturbance in the spring passes up and down as a wave, being reflected at each end in turn. This to and fro movement continues until it is damped out by friction and air resistance. With most springs the speed of propagation of the disturbance is considerable and only a confused flutter of the coils is apparent to an observer. A disturbance of this type is caused by any movement of the end of the spring. The more abrupt the movement of the end, the more pronounced will the disturbance be. An instance of the type of movement producing a pronounced surge is that due to impact between the tappet and the valve when the valve commences to open.


2014 ◽  
Vol 945-949 ◽  
pp. 2810-2814
Author(s):  
Jing Liu ◽  
Jing Tao Han ◽  
Jin Chun Deng

Turbine Air Powered Engine (TAPE) is a new type engine which has the character of zero emission, no pollution. Mathematical models of TAPE were established by the method of exergy analysis, the overall exergy and the exergy loss after reduced pressure with throttling were simulated in this paper. The results show that the maximum exergy loss of system is 60% during the process of reduced pressure with throttling, so the type of throttling decompression is not suitable for the system of TAPE which has bigger pressure reducing ratio. The results of bench test indicate that output power increases with the increase of inlet pressure within the scope of less pressure, and the regulation is similar to the simulating result. In the hybrid system of pneumatic internal-combustion engine, the measure which the air powered system is used in low-speed stage and the internal combustion engine powered system is adopted in high-speed stage can effectively solve the problem which the fuel consumption of the internal combustion engine is too bigger at low speed.


Sign in / Sign up

Export Citation Format

Share Document