CALCULATION OF GEOMETRICAL PARAMETERS OF CYLINDRICAL BEARING DEVICE IN THE PERIPHERAL PORTION OF THE DISINTEGRATOR

Author(s):  
Игорь Семикопенко ◽  
Igor' Semikopenko ◽  
Сергей Латышев ◽  
Sergey Latyshev ◽  
Виталий Воронов ◽  
...  
2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Author(s):  
I. G. Shubin ◽  
A. A. Kurkin

During manufacturing nuts of increased height, a problem of obtaining correct cylindrical form of the hole for thread and overall geometrical parameters arises. To solve the problem it is necessary to know regularity of the blank forming process. Results of the study of a technological process of high hexahedral nuts forming presented. The nuts were M18 of 22 mm height, M16 of 19 mm height and M12 of normal height 10 mm according to GOST 5915–70, accuracy class B, steel grade 10 according to GOST 10702–78. The volumetric stamping was accomplished at the five-position automatic presses of АА1822 type. It was determined, that unevenness of the metal flow in the process of plastic deformation of blanks of increased height nuts was caused by different stress conditions by their sections. To simulate the mode of deformation, the program complex QForm-3D was chosen. The complex ensured to forecast with necessary accuracy the metal flow in a blank, as well as to define the deformation force and arising stress in the working instrument. The simulation showed the presence of regularity between preliminary formed buffle and deviation of dimensions and form of a blank wall after its finishing piercing, which can be expressed by a nonlinear dependence. The limit values of the relative height of the buffle С/D = 0.56–0.588 defined, exceeding which will result in rejection of the finished product. Accounting the limit values of the relative height of the buffle will enable to correct a mode of technological operations and technological instruments at stamping of high hexahedral nuts.


2017 ◽  
Vol 13 (2) ◽  
pp. 33-42
Author(s):  
Ye.V. Shapovalov ◽  
◽  
V.O. Koliada ◽  
D.D. Topchev ◽  
N.F. Lutsenko ◽  
...  

Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


2020 ◽  
Vol 22 (4) ◽  
pp. 1061-1076
Author(s):  
Wafa Bensmain ◽  
Mohammed Benlebna ◽  
Boualem Serier ◽  
Bel Abbes ◽  
Bachir Bouiadjra

AbstractOsseointegration is a fundamental phenomenon of dental implantology. It ensures the stability, the safety and the durability of dental implants and predictable clinical success in long-term. The geometric form of the implant is a defining parameter of osseointegration and implant-bone charge transfer. This is the essential constitutes of this study. In fact, we demonstrate using the finite elements method with tridimensional numerical computations, that the geometrical parameters of the implant conditionate the level and the repartition of the stresses, induced in the cortical bone and the spongy bone during the masticatory process, simulated here by dynamic charging. The effect of several parameters [size and conicity of the implant neck, size and radius of curvature of the implant apex] and the shape of the implant corps on the biomechanical behavior of the bone. The latest was analyzed in terms of variation of the equivalent stress induced in the bone. The purpose of this analysis was the developing of an implant form allowing stress relaxation, during the mastication process, in the living tissue.


Author(s):  
Bruno de Campos Salles Anselmo ◽  
Sandro Metrevelle Marcondes de Lima e Silva

2020 ◽  
Vol 2020 (10) ◽  
pp. 22-28
Author(s):  
Vadim Kuc ◽  
Dmitriy Gridin

The work purpose was the investigation of dependence impact of tool geometrical parameters upon shaping effort during internal groove cutting. As a realization for the fulfillment of the helical groove processing investigation there was used a software complex based on a finite element method and a computer mathematic system. As a result of the investigations carried out there was obtained a regression equation manifesting the dependence of factors impact upon axial force falling on one tooth of the tool in the set scale of factor parameters. The scientific novelty consists in that in the paper there is considered a new method for helical groove cutting in which a shaping motion is carried out at the expense of the contact interaction of a tool and a billet performing free cutting. The investigation results obtained allowed determining the number of teeth operating simultaneously, that can be used further at cutting mode setting, and also as recommendations during designing tool design.


Author(s):  
K. H. Levchyk ◽  
M. V. Shcherbyna

A technical solution is proposed for the elimination the grabbing of drilling tool, based on the use of energy due to the circulation of the drilling fluid. The expediency eliminating the grabbing drilling tool using the hydro-impulse method is substantiated. A method of drawing up a mathematical model for the dynamic process of a grabbing string of drill pipes in the case of perturbation of hydro-impulse oscillations in the area of the productive rock layer is developed. The law of longitudinal displacements arising in the trapped string is obtained, which allows choosing the optimal geometrical parameters of the passage channels and the frequency rotational of shutter for these channels. Recommendations for using this method for practical use have been systematized.


One of efficiency indicators of grain grinders is grain granulometric composition. The basis of mixed fodder is crushed grain, the particles of which must have a leveled granulometric composition for subsequent mixing and obtaining a high-quality feed mixture. In agricultural production, hammer crushers are widely used, in which the destruction of grain occurs due to the impact of a hinged hammer. The main disadvantage of these crushers is that not the entire surface of the hammers is involved in grinding, thus reduces grinding process efficiency. A slightly different principle of material destruction is laid down in the basis of the proposed design of the shock-centrifugal grinder. Main work is performed by flat impact elements located on the rotor, which serve to accelerate crushed particles with subsequent impact of them on the bump elements. An important step in the design of new constructions of shock-centrifugal grinders is to determine size and location of the impact elements on the rotor, without which the grinding process is not possible. In the calculation method presented, the dependencies for determining the velocities and angles of a single particle flight from the surface of a flat impact element for its specified dimensions are proposed. Two variants of an impact element location on the rotor are considered and analyzed: radial and at an angle in the direction of rotor rotation. As a result of research carried out, it is noted that in the case of inclined position of an impact element on the rotor an increase in flight speed and flight angles change in crushed particles, which gives the opportunity to have a positive effect on grinding process.


Author(s):  
I. N. Belezyakov ◽  
K. G. Arakancev

At present time there is a need to develop a methodology for electric motors design which will ensure the optimality of their geometrical parameters according to one or a set of criterias. With the growth of computer calculating power it becomes possible to develop methods based on numerical methods for electric machines computing. The article describes method of a singlecriterion evolutionary optimization of synchronous electric machines with permanent magnets taking into account the given restrictions on the overall dimensions and characteristics of structural materials. The described approach is based on applying of a genetic algorithm for carrying out evolutionary optimization of geometric parameters of a given configuration of electric motor. Optimization criteria may be different, but in automatic control systems high requirements are imposed to electromagnetic torque electric machine produces. During genetic algorithm work it optimizes given geometric parameters of the electric motor according to the criterion of its torque value, which is being calculated using finite element method.


Sign in / Sign up

Export Citation Format

Share Document