Strongly nil regular clean rings

2021 ◽  
Vol 16 (3) ◽  
pp. 125-129
Author(s):  
Zubaida M. Ibraheem ◽  
Raghad I. Zidan
Keyword(s):  
2021 ◽  
pp. 1-12
Author(s):  
Alexi Block Gorman ◽  
Alexander Diesl
Keyword(s):  

2017 ◽  
Vol 16 (10) ◽  
pp. 1750197 ◽  
Author(s):  
Janez Šter

We provide a strong condition holding for nil-clean quadratic elements in any ring. In particular, our result implies that every nil-clean involution in a ring is unipotent. As a consequence, we give a complete classification of weakly nil-clean rings introduced recently in [Breaz, Danchev and Zhou, Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl. 15 (2016) 1650148, doi: 10.1142/S0219498816501486].


2019 ◽  
Vol 18 (03) ◽  
pp. 1950050
Author(s):  
Huanyin Chen ◽  
Marjan Sheibani Abdolyousefi
Keyword(s):  

A ring [Formula: see text] is Zhou nil-clean if every element in [Formula: see text] is the sum of two tripotents and a nilpotent that commute. A ring [Formula: see text] is feebly clean if for any [Formula: see text] there exist two orthogonal idempotents [Formula: see text] and a unit [Formula: see text] such that [Formula: see text]. In this paper, Zhou nil-clean rings are further discussed with an emphasis on their relations with feebly clean rings. We prove that a ring [Formula: see text] is Zhou nil-clean if and only if [Formula: see text] is feebly clean, [Formula: see text] is nil and [Formula: see text] has exponent [Formula: see text] if and only if [Formula: see text] is weakly exchange, [Formula: see text] is nil and [Formula: see text] has exponent [Formula: see text]. New properties of Zhou rings are thereby obtained.


2011 ◽  
Vol 30 (2) ◽  
pp. 277-284 ◽  
Author(s):  
Ali H Handam
Keyword(s):  

2017 ◽  
Vol 21 (21) ◽  
pp. 180-180 ◽  
Author(s):  
Andrada Ciımpean ◽  
Peter Danchev
Keyword(s):  

2015 ◽  
Vol 14 (06) ◽  
pp. 1550094 ◽  
Author(s):  
Warren Wm. McGovern ◽  
Shan Raja ◽  
Alden Sharp

In [A. J. Diesl, Classes of strongly clean rings, Ph.D. Dissertation, University of California, Berkely (2006); Nil clean rings, J. Algebra383 (2013) 197–211], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short paper, we characterize nil clean commutative group rings.


2017 ◽  
Vol 15 (1) ◽  
pp. 420-426 ◽  
Author(s):  
Ali H. Handam ◽  
Hani A. Khashan
Keyword(s):  

Abstract An element in a ring R with identity is said to be strongly nil clean if it is the sum of an idempotent and a nilpotent that commute, R is said to be strongly nil clean if every element of R is strongly nil clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. Then R is said to be strongly g(x)-nil clean if every element in R is a sum of a nilpotent and a root of g(x) that commute. In this paper, we give some relations between strongly nil clean rings and strongly g(x)-nil clean rings. Various basic properties of strongly g(x) -nil cleans are proved and many examples are given.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650148 ◽  
Author(s):  
Simion Breaz ◽  
Peter Danchev ◽  
Yiqiang Zhou

Generalizing the notion of nil-cleanness from [A. J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211], in parallel to [P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra 425 (2015) 410–422], we define the concept of weak nil-cleanness for an arbitrary ring. Its comprehensive study in different ways is provided as well. A decomposition theorem of a weakly nil-clean ring is obtained. It is completely characterized when an abelian ring is weakly nil-clean. It is also completely determined when a matrix ring over a division ring is weakly nil-clean.


Author(s):  
Gaohua Tang ◽  
Huadong Su ◽  
Pingzhi Yuan

An element [Formula: see text] of a ring [Formula: see text] is called a quasi-idempotent if [Formula: see text] for some central unit [Formula: see text] of [Formula: see text], or equivalently, [Formula: see text], where [Formula: see text] is a central unit and [Formula: see text] is an idempotent of [Formula: see text]. A ring [Formula: see text] is called a quasi-Boolean ring if every element of [Formula: see text] is quasi-idempotent. A ring [Formula: see text] is called (strongly) quasi-clean if each of its elements is a sum of a quasi-idempotent and a unit (that commute). These rings are shown to be a natural generalization of the clean rings and strongly clean rings. An extensive study of (strongly) quasi-clean rings is conducted. The abundant examples of (strongly) quasi-clean rings state that the class of (strongly) quasi-clean rings is very larger than the class of (strongly) clean rings. We prove that an indecomposable commutative semilocal ring is quasi-clean if and only if it is local or [Formula: see text] has no image isomorphic to [Formula: see text]; For an indecomposable commutative semilocal ring [Formula: see text] with at least two maximal ideals, [Formula: see text]([Formula: see text]) is strongly quasi-clean if and only if [Formula: see text] is quasi-clean if and only if [Formula: see text], [Formula: see text] is a maximal ideal of [Formula: see text]. For a prime [Formula: see text] and a positive integer [Formula: see text], [Formula: see text] is strongly quasi-clean if and only if [Formula: see text]. Some open questions are also posed.


Sign in / Sign up

Export Citation Format

Share Document