scholarly journals The Morphological Responses of Cultured Bovine Aortic Endothelial Cells to Fluid-Imposed Shear Stress under Sparse and Colony Conditions.

1997 ◽  
Vol 63 (607) ◽  
pp. 838-845 ◽  
Author(s):  
Noriyuki KATAOKA ◽  
Shingo UJITA ◽  
Keishu KIMURA ◽  
Masaaki SATO
Endothelium ◽  
2004 ◽  
Vol 11 (3-4) ◽  
pp. 189-198 ◽  
Author(s):  
Nolan L. Boyd ◽  
Heonyong Park ◽  
Wen-Ping Sun ◽  
Sarah E. Coleman ◽  
Ramakrishna S. Cherukuri ◽  
...  

1999 ◽  
Vol 277 (4) ◽  
pp. H1593-H1599 ◽  
Author(s):  
Ying-Li Hu ◽  
Song Li ◽  
John Y.-J. Shyy ◽  
Shu Chien

The disruption of microtubules by treating bovine aortic endothelial cells with 10−7–10−5M colchicine caused apoptosis, as evidenced by DNA laddering and TdT-mediated dUTP nick end labeling fluorescence staining. Colchicine treatment also induced a sustained activation of c-Jun NH2-terminal kinase (JNK) that lasted for ≥12 h. The blockade of JNK activity by using the negative interfering mutant JNK(K-R) markedly decreased the apoptosis induced by colchicine. Exposure of bovine aortic endothelial cells to laminar shear stress (12 dyn/cm2) caused a transient (<2 h) activation of JNK, and there was no induction of apoptosis. The sustained activation of JNK may play a significant role in the apoptosis induced by colchicine.


1999 ◽  
Vol 276 (4) ◽  
pp. C838-C847 ◽  
Author(s):  
Li-Hong Yeh ◽  
Young J. Park ◽  
Riple J. Hansalia ◽  
Imraan S. Ahmed ◽  
Shailesh S. Deshpande ◽  
...  

The shear-induced intracellular signal transduction pathway in vascular endothelial cells involves tyrosine phosphorylation and activation of mitogen-activated protein (MAP) kinase, which may be responsible for the sustained release of nitric oxide. MAP kinase is known to be activated by reactive oxygen species (ROS), such as H2O2, in several cell types. ROS production in ligand-stimulated nonphagocytic cells appears to require the participation of a Ras-related small GTP-binding protein, Rac1. We hypothesized that Rac1 might serve as a mediator for the effect of shear stress on MAP kinase activation. Exposure of bovine aortic endothelial cells to laminar shear stress of 20 dyn/cm2for 5–30 min stimulated total cellular and cytosolic tyrosine phosphorylation as well as tyrosine phosphorylation of MAP kinase. Treating endothelial cells with the antioxidants N-acetylcysteine and pyrrolidine dithiocarbamate inhibited in a dose-dependent manner the shear-stimulated increase in total cytosolic and, specifically, MAP kinase tyrosine phosphorylation. Hence, the onset of shear stress caused an enhanced generation of intracellular ROS, as evidenced by an oxidized protein detection kit, which were required for the shear-induced total cellular and MAP kinase tyrosine phosphorylation. Total cellular and MAP kinase tyrosine phosphorylation was completely blocked in sheared bovine aortic endothelial cells expressing a dominant negative Rac1 gene product (N17rac1). We concluded that the GTPase Rac1 mediates the shear-induced tyrosine phosphorylation of MAP kinase via regulation of the flow-dependent redox changes in endothelial cells in physiological and pathological circumstances.


2002 ◽  
Vol 282 (4) ◽  
pp. C708-C718 ◽  
Author(s):  
Victor G. Romanenko ◽  
Peter F. Davies ◽  
Irena Levitan

The key mechanism responsible for maintaining cell volume homeostasis is activation of volume-regulated anion current (VRAC). The role of hemodynamic shear stress in the regulation of VRAC in bovine aortic endothelial cells was investigated. We showed that acute changes in shear stress have a biphasic effect on the development of VRAC. A shear stress step from a background flow (0.1 dyn/cm2) to 1 dyn/cm2 enhanced VRAC activation induced by an osmotic challenge. Flow alone, in the absence of osmotic stress, did not induce VRAC activation. Increasing the shear stress to 3 dyn/cm2, however, resulted in only a transient increase of VRAC activity followed by an inhibitory phase during which VRAC was gradually suppressed. When shear stress was increased further (5–10 dyn/cm2), the current was immediately strongly suppressed. Suppression of VRAC was observed both in cells challenged osmotically and in cells that developed spontaneous VRAC under isotonic conditions. Our findings suggest that shear stress is an important factor in regulating the ability of vascular endothelial cells to maintain volume homeostasis.


Endothelium ◽  
2003 ◽  
Vol 10 (4) ◽  
pp. 267-275 ◽  
Author(s):  
Beate Fisslthaler ◽  
Kerstin Boengler ◽  
Ingrid Fleming ◽  
Wolfgang Schaper ◽  
Rudi Busse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document