Study on Life-Cycle Energy Consumption and Greenhouse Gases Emission of Battery Electric Passenger Vehicles in China

Author(s):  
Bo Zhang ◽  
Qiang Lu ◽  
Zheng Shen ◽  
Yaokun Yang ◽  
Yunlin Liang

Based on the localized data of environmental load, this study has established the life cycle assessment (LCA) model of battery electric passenger vehicle (BEPV) that be produced and used in China, and has evaluated the energy consumption and greenhouse gases (GHGs) emission during vehicle production and operation. The results show that the total energy consumption and GHG emissions are 438GJ and 37,100kg (in terms of CO2 equivalent) respectively. The share of GHG emissions in total emissions at the production stage is 24.6%, and 75.4% GHG emissions are contributed by the operational stage. The main source of energy consumption and GHG emissions at vehicle production stage is the extraction and processing of raw materials. The GHG emissions of raw materials production accounts for 75.0% in the GHG emissions of vehicle production and 18.0% in the GHG emissions of full life cycle. The scenario analysis shows that the application of recyclable materials, power grid GHG emission rates and vehicle energy consumption rates have significant influence on the carbon emissions in the life cycle of vehicle. Replacing primary metals with recycled metals can reduce GHG emissions of vehicle production by about 7.3%, and total GHG emissions can be reduced by about 1.8%. For every 1% decrease in GHG emissions per unit of electricity, the GHG emissions of operation stage will decrease by about 0.9%; for every 1.0% decrease in vehicle energy consumption rate, the total GHG emissions decrease by about 0.8%. Therefore, developing clean energy, reducing the proportion of coal power, optimizing the production of raw materials and increasing the application of recyclable materials are effective ways to improve the environmental performance of BEPV.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1244
Author(s):  
Qi Jiang ◽  
Fusong Wang ◽  
Quantao Liu ◽  
Jun Xie ◽  
Shaopeng Wu

In this paper, the sustainability of induced healing asphalt pavement is demonstrated by comparing the impact of asphalt pavement maintained by induced healing asphalt pavement technology and traditional maintenance methods (such as milling and overlaying). The functional unit selected is a 1-km lane with an analysis period of 20 years. The stages to be considered are material manufacturing, paving, maintenance, milling and demolition. Two case studies were analyzed to assess the impact of different technologies on the energy consumption and environmental performance of each maintenance alternative. By comparing the energy consumption and environmental emissions of the whole life cycle of pavement under the two technical conditions, the results show that the total energy consumption of traditional asphalt pavement is about 2.5 times that of induction-healed asphalt pavement, and the total greenhouse gas (GHG) emissions of the former are twice as much as that of the latter.


2015 ◽  
Vol 814 ◽  
pp. 447-457 ◽  
Author(s):  
Wan Xia Shen ◽  
Bo Zhang ◽  
Yu Feng Zhang ◽  
Xue Chao Wang ◽  
Qiang Lu ◽  
...  

Based on producing and manufacturing process of key components, a light-duty battery electric passenger vehicle was selected as a research object, and the energy consumption and environmental emissions from raw materials production, electric vehicle manufacture and operation process in depth were analyzed. The results showed that, the energy consumption for the whole life cycle of EV was 438GJ. The production and operation process of EV accounted for 18.5% and 81.5%, respectively. The GHGs (including CO2, CH4and N2O) emission was 39.3tCO2-eq. The production and operation processed of EV account for 17% and 83%, respectively. Five kinds of other gases emissions from the production and operation process of EV were as follows: 305kg SOx, 206kg NOx, 133kg PM, 69.3kg CO, and 14.6kg NMVOCs. The production and manufacture of key parts and components account for the largest share of the total energy consumption and environmental emissions. Battery system is in the next place, while motor system is least.


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116588 ◽  
Author(s):  
Guoxuan Li ◽  
Peizhe Cui ◽  
Yinglong Wang ◽  
Zhiqiang Liu ◽  
Zhaoyou Zhu ◽  
...  

Author(s):  
Barbara Pawłowska

The Energy Union is aimed at providing secure, sustainable, competitive energy to the EU population at affordable prices. A thorough transformation of the European energy system is required to accomplish this goal. The Energy Union is an important project which is supposed to set a new direction and a clear long-term vision for the European energy and climate policy. Transport is one of the key sectors in terms of energy consumption. In 2015, 94% of the energy used transport originated from crude oil and the sector’s share in the total energy consumption was 34% (Eurostat, 2016). The aim of the article is to show the activities in respect of the implementation of the “Clean Energy for Transport” package and its importance for the implementation of the Energy Union objectives. The development of an alternative fuel market should reduce the dependence on oil and contribute to increased security of the energy supply for Europe, promote economic growth and reduce greenhouse gas emissions in transport. Tools aimed at supporting the transition to low-carbon economy will be analyzed in the article. The scope of popularization of alternative fuels is determined to a large extent by market conditions and the extent to which an adequate infrastructure is developed. Hence, particular emphasis will be placed on the priorities for the development of technology and research, technical integration of solutions and financial support for alternative fuels.


2018 ◽  
Vol 19 (1) ◽  
pp. 70-78
Author(s):  
A. Kalbusch ◽  
E. Ghisi

Abstract The main objective of this paper is to propose a method for quantifying the energy consumption in the life cycle of different plumbing fixtures. The method can be used to estimate the energy consumption in the production, use and disposal phases of plumbing fixtures. This allows for the comparison between the performances of different plumbing fixtures and the identification of the share of each phase on the energy consumption over the life cycle. The method was applied in a case study in Southern Brazil to quantify the energy consumption in the life cycle of two types of taps installed on a university campus. The total energy consumption in the life cycle of ordinary and self-closing taps used in the study was respectively, 177.71 MJ and 164.11 MJ over 4 years. Production accounted for 33% of the energy consumption share of the ordinary tap, while the use phase accounted for 65% and the disposal phase for 2%. For the self-closing tap, the production phase accounted for 46% of the energy consumption share, the use phase for 52% and the disposal phase for 2%. Therefore, considering the energy consumption in the life cycle, self-closing taps should be preferred over ordinary taps.


Sign in / Sign up

Export Citation Format

Share Document